
- •Основы информационных технологий (теория систем, дискретная и компьютерная математика, теория управления, моделирование) (Первые вопросы в билетах).
- •Интерполирование функций (многочленами Лагранжа; интерполяционная формула Ньютона; интерполяция кубическими сплайнами).
- •Приближение функций (метод наименьших квадратов; линейная регрессия; нелинейная регрессия; полиномиальная аппроксимация; дискретное преобразование Фурье).
- •Формула трапеций
- •Численное решение систем линейных алгебраических уравнений (метод Гаусса; метод итераций).
- •11. Универсальный метод информационных технологий – статистическое моделирование нелинейных систем со случайными характеристиками в условиях помех (метод Монте-Карло).
- •!!!13 И 14 вопросы отсутствуют в билетах!!!
- •!!!16 Вопрос отсутствует в билетах!!!
- •1.2.1. Принцип разомкнутого управления
- •1.2.2. Принцип компенсации
- •1.2.3. Принцип обратной связи
- •1. Введение
- •2. Итерационные методы Якоби и Зейделя
- •3. Метод последовательной верхней релаксации
- •4. Матрично-векторное представление итерационных методов
- •Динамические модели в экономике (регрессионные, авторегрессионные, регрессионно-авторегрессионные модели; модели накопления и дисконтирования; модели «затраты-выпуск»).
- •Основы вычислительной техники. (Вторые вопросы в билетах)
- •Характеристики современных операционных систем (многопоточность, симметричная многопроцессорность, распределенные операционные системы, объектно-ориентированный дизайн).
- •Дискретный сигнал
- •Вычислительные сети и системы (протоколы обмена тср, iр, ssl, skip, NetBeui, ipx, spx, NetBios, модель osi, типы соединения эвм, используемые при построении локальных сетей).
- •Информация (аналоговая и цифровая информация, оценки количества информации, энтропийный подход).
- •Структура микропроцессора (алу, регистры: аккумуляторы, ввода-вывода, понятие шины: шина данных, адресная шина, шина команд; запоминающие устройства: пзу, озу, созу, кэш-память).
- •!!!16 Вопроса нет в билетах!!!
- •17. Понятие нелинейных преобразователей (транзисторы, ключи, диодные выпрямители, логические элементы, нейронные сети).
- •1.8. Основные методы расчета сложных электрических цепей
- •19. Расчет комплексных сопротивлений линейных цепей (последовательные цепи: rc-цепь, rl-цепь, rlc-цепь; параллельные цепи: rc-цепь, rl-цепь, lc-цепь; последовательно-параллельные цепи: r-lc, c-rl).
- •Основы алгоритмизации и программирования. (Третьи вопросы в билетах)
- •2. Методы сортировки и поиска данных в массивах и файлах. Оценки скорости.
- •Современные языки программирования (с, Java, Delphi, vb). Типы данных языка. Структура приложения.
- •Примитивные типы
- •Типы данных
- •Объекты
- •Статическая и динамическая память, определение, область применения. Алгоритмы обработки очереди, списка, стека.
- •4 Шага добавления
- •Основные компоненты в языках (с, Java, Delphi). Их свойства, методы, события. Реализация графики.
- •7. Понятия объектно-ориентированного программирования. Поля, свойства, методы, события. Область видимости. Пример класса.
- •Базы данных. Типы бд. Реляционные бд. Типы полей. Типы связей. Язык запросов sql. Индексирование баз данных.
- •Создание Internet-приложений (на стороне клиента и сервера). Язык разметки гипертекста html. Специализированные инструменты (php). Создание Internet-приложений средствами языков с, Java, Delphi.
- •Глава 1 – содержание элемента html
- •6.3. Рисунки
- •Основные элементы блок схем программирования, типовые блок схемы (ввода-вывода, исполнения команд, условного перехода; ветвящиеся программы, циклические программы, вложенные циклы).
19. Расчет комплексных сопротивлений линейных цепей (последовательные цепи: rc-цепь, rl-цепь, rlc-цепь; параллельные цепи: rc-цепь, rl-цепь, lc-цепь; последовательно-параллельные цепи: r-lc, c-rl).
Электрическая цепь - совокупность устройств, предназначенных для передачи, распределения и взаимного преобразования энергии.
Основными элементами электрической цепи являются источники и приемники электрической энергии, которые соединены между собой проводниками.
В источниках электрической энергии химическая, механическая, тепловая энергия или энергия других видов превращается в электрическую.
В приемниках электрической энергии - электрическая энергия преобразуется в тепловую, световую, механическую и другие.
Электрические цепи, в которых получение энергии, передача и преобразование происходят при неизменных во времени токах и напряжениях называют цепями постоянного тока.
Закон Ома для участка цепи без ЭДС устанавливает связь между током и напряжением на этом участке
или
последовательным соединением R, L, C
Если
к участку с последовательным соединением
элементов R,
L,
C
приложено синусоидальное напряжение
,
то и ток в цепи синусоидальный
.
На каждом из элементов будет падать напряжение
По
второму закону Кирхгофа для мгновенных
значений
Для комплексных выражений
Подставив
в выражение
Получим закон Ома в комплексной форме:
,
где
- комплексное сопротивление
Сопротивление параллельной RLC-цепи переменному току:
последовательным соединением R, L, и R, C
ω - угловая частота
Z1= 1/jC = 10/j = j10; Z2 = jL и Z3 = R = 10.
Так как Z2 и Z3 соединены параллельно, то для входного сопротивления цепи имеем
Такое же для RL (только вместо 1/jωC = jωL)
Параллельное соединение трех сопротивлений
20. Современные периферийные устройства и сетевое оборудование вычислительной и телекоммуникационной техники, их характеристики (принтеры, сканеры, модемы, коммутаторы и концентраторы, линии связи, факсы, флешь память).
Принтеры
Принтер это широко распространенное устройство вывода информации на бумагу, его название образовано от английского глагола to print - печатать. Принтер не входит в базовую конфигурацию ПК. Существуют различные типы принтеров:
Типовой принтер работает аналогично электрической печатающей машинке. Достоинства: четкое изображение символов, возможность изменения шрифтов при замене типового диска. Недостатки: шум при печати, низкая скорость печати (30-40 зн./сек.), невозможна печать графического изображения.
Матричные (игольчатые) принтеры - это самые дешевые аппараты, обеспечивающие удовлетворительное качество печати для широкого круга рутинных операций (главным образом для подготовки текстовых документов). Применяются в сберкассах, в промышленных условиях, где необходима рулонная печать, печать на книжках и плотных карточках и других носителях из плотного материала. Достоинства: приемлемое качество печати при условии хорошей красящей ленты, возможности печати "под копирку". Недостатки: достаточно низкая скорость печати, особенно графических изображений, значительный уровень шума. Среди матичных принтеров есть и достаточно быстрые устройства (так называемые, Shattle-принтеры).
Струйные принтеры обеспечивают более высокое качество печати. Они особенно удобны для вывода цветных графических изображений. Применение чернил разного цвета дает сравнительно недорогое изображение приемлемого качества. Цветную модель называют СМYB (Cyan-Magenta-Yellow-Black) по названиям основных цветов, образующих палитру.
Струйные принтеры значительно меньше шумят. Скорость печати зависит от качества. Достаточно эффективны при создании рекламных проспектов, календарей, поздравительных открыток. Этот тип принтера занимает промежуточное накопление между матричными и лазерными принтерами.
Лазерные принтеры - имеют еще более высокое качество печати, приближенное к фотографическому. Они стоят намного дороже, однако скорость печати в 4-5 раз выше, чем у матричных и струйных принтеров. Недостатком лазерных принтеров являются довольно жесткие требования к качеству бумаги - она должна быть достаточно плотной и не должна быть рыхлой, недопустима печать на бумаге с пластиковым покрытием и т.д.
Особенно эффективны лазерные принтеры при изготовлении оригинал-макетов книг и брошюр, деловых писем и материалов, требующих высокого качества. Они позволяют с большой скоростью печатать графики, рисунки.
За последние годы, с одной стороны, стоимость лазерных принтеров снизилась, и теперь их все чаще можно встретить у "рядовых" пользователей. С другой стороны, струйные принтеры по качеству и другим возможностям неуклонно сближаются с лазерными.
Лазерные принтера делятся на два типа: локальные и сетевые. К сетевым принтерам можно подключится, используя IP адрес. Все чаще на рынке можно среди лазерных принтеров встретить цветные. Цветные лазерные принтера встречаются и среди офисных (сетевых).
Светодиодные принтеры - альтернатива лазерным. Разработчик - фирма OKI.
Термические принтеры. Используются для получения цветного изображения фотографического качества. Требуют особой бумаги. Такие принтеры пригодны для деловой графики.
Принтер на технологии Micro Dry. Эти принтеры дают полные фотонатуральные цвета, имеют высочайшее разрешение. Это новое конкурентоспособное направление. Намного дешевле лазерных и струйных принтеров. Разработчик - фирма Citizen. Печатает на любой бумаге и картоне. Принтер работает с низким уровнем шума.
Сканер
Для непосредственного считывания графической информации с бумажного или иного носителя в ПК применяется оптические сканеры. Сканируемое изображение считывается и преобразуется в цифровую форму элементами специального устройства: CCD - чипами. Существует множество видов и моделей сканеров. Какой из них выбрать, зависит от задач, для которых сканер предназначается. Самые простые сканеры распознают только два цвета: черный и белый. Такие сканеры используют для чтения штрихового кода.
Ручные сканеры - самые простые и дешевые. Основной недостаток в том, что человек сам перемещает сканер по объекту, и качество полученного изображения зависит от умения и твердости руки. Другой важный недостаток - небольшая ширина полосы сканирования (до 10 см), что затрудняет чтение широких оригиналов.
Барабанные сканеры применяются в профессиональной типографической деятельности. Принцип заключается в том, что оригинал на барабане освещается источником света, а фотосенсоры переводят отраженное излучение в цифровое значение.
Листовые сканеры. Их основное отличие от двух предыдущих в том, что при сканировании неподвижно закреплена линейка с CCD - элементами, а лист со сканируемым изображением движется относительно нее с помощью специальных валиков.
Планшетные сканеры. Это самый распространенный сейчас вид для профессиональных работ. Сканируемый объект помещается на стеклянный лист, изображение построчно с равномерной скоростью считывается головкой чтения с CCD - сенсорами, расположенной снизу. Планшетный сканер может быть оборудован специальным устройством слайд-приставкой для сканирования диапозитивов и негативов.
Для сканирования слайдов и микроизображений ранее использовались слайд-сканеры. Сейчас возможность сканирования слайдов включена во многие модели планшетных сканеров.
Проекционные сканеры. Относительно новое направление. Цветной проекционный сканер является мощным многофункциональным средством для ввода в компьютер любых цветных изображений, включая трехмерные. Он вполне может заменить фотоаппарат.
В наше время у сканеров появилось еще одно применение - считывание рукописных текстов, которые затем специальными программами распознавания символов преобразуются в коды ASC II и в дальнейшем могут обрабатываться текстовыми редакторами.
Интерфейс может быть разным:
Собственный интерфейс – сканер поставляется со своей уникальной картой и работает только с ней. Эта карта может не заработать в лично Вашем компьютере или выйти из строя.
SCSI – если использовать сканер не с поставляемой в комплекте картой, то лёгкая совместимость получается не всегда.
LPT – сканеру может быть необходима поддержка портом одного из скоростных протоколов. Если EPP обычно есть всегда, то необходимый для сканеров Epson вариант 8-бит Bi-Directional реализован не везде.
USB – самый распространенный вариант подключения на сегодняшний день. Просто подключить и, при наличии всех драйверов и программ, работает всегда.
Модемы
В настоящее время существуют два вида модемов: аналоговые и цифровые (технология xDSL).
Аналоговые модемы более популярны из-за своей дешевизны и используются в основном для выхода в сеть Internet, и только иногда (из-за невысокой (до 56 Кбит/с) скорости передачи данных) для связи с другими ПК. Цифровые же модемы довольно дорогие и используются для высокоскоростных соединений с сетью Internet, либо для организации локальной сети на больших расстояниях (xDSL модемы позволяют передавать и принимать информацию со скоростью до 5Мбит/с на расстоянии 5-7 км).
Модемы имеют несколько типов соединений с ПК: COM, USB или (для цифровых модемов) посредством сетевой карты. Модем, соединение которого идет через COM-порт, требует дополнительного источника (блока) питания, а при соединении при помощи USB-порта потребность в блоке питания отпадает. xDSL-модемы также требуют дополнительного источника питания.
Концентратор и коммутатор
Концентратор и коммутатор относятся к разным типам активного сетевого оборудования, которое используется для соединения устройств сети. Они отличаются способом передачи в сеть тех данных (трафика), которые к ним поступают. Термин концентратор иногда используется для обозначения любого сетевого устройства, которое служит для объединения всех ПК сети, но на самом деле концентратор - это многопортовый повторитель. Устройства этого типа просто передают (повторяют) всю информацию, которую они получают. То есть все устройства, подключенные к портам концентратора, получают одну и ту же информацию.
Концентраторы используются для расширения сети. Однако чрезмерное увлечение концентраторами может привести к большому количеству ненужного трафика, который поступает на сетевые устройства. Ведь концентраторы передают трафик в сеть, не определяя реальный пункт назначения данных. ПК, которые получают пакеты данных, используют адреса назначения, имеющиеся в каждом пакете, для определения, им предназначен пакет или нет. В небольших сетях это не является проблемой, но даже в сетях среднего размера с интенсивным трафиком следует использовать коммутаторы, которые минимизируют количество необязательного трафика.
Коммутаторы контролируют и управляют сетевым трафиком, анализируя адреса назначения каждого пакета. Коммутатор знает, какие устройства соединены с его портами, и направляет пакеты только на необходимые порты. Это дает возможность одновременно работать с несколькими портами, расширяя тем самымполосу пропускания.
Таким образом, коммутация уменьшает количество лишнего трафика, который возникает, когда одна и та же информация передается всем портам. Коммутаторы и концентраторы часто используются в одной и той же сети; концентраторы расширяют сеть, увеличивая число портов, а коммутаторы разбивают сеть на небольшие менее перегруженные сегменты.
В небольшой сети (до 20 рабочих мест) концентратор или группа концентраторов вполне могут справиться с сетевым трафиком. В этом случае концентратор просто служит для соединения всех пользователей сети. В сети большего размера (более 25 пользователей) может появиться необходимость использовать коммутаторы для разделения сети на сегменты, чтобы уменьшить количество необязательного трафика.
Если Вы используете концентратор или коммутатор с индикаторами, показывающими
степень загруженности сети, то, анализируя их показания, можно сделать
определенные выводы. Так в том случае, если трафик постоянно велик, следует
использовать коммутатор для разделения сети на сегменты.
Линии связи и их характеристики
В компьютерных сетях используются телефонные, телеграфные, телевизионные, спутниковые сети связи. В качестве линий связи применяются проводные (воздушные), кабельные, радиоканалы наземной и спутниковой связи. Различие между ними определяется средой передачи данных. Физическая среда передачи данных может представлять собой кабель, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны
Проводные (воздушные) линии связи – это провода без изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. Традиционно они служат для передачи телефонных и телеграфных сигналов, но при отсутствии других возможностей применяются для передачи компьютерных данных. Проводные линии связи отличаются небольшой пропускной способностью и малой помехозащищенностью, поэтому они быстро вытесняются кабельными линиями.
Кабельные линии включают кабель, состоящий из проводников с изоляцией в несколько слоев – электрической, электромагнитной, механической, и разъемы для присоединения к нему различного оборудования. В КС применяются в основном три типа кабеля: кабель на основе скрученных пар медных проводов (это витая пара в экранированном варианте, когда пара медных проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует), коаксиальный кабель (состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции) и волоконно-оптический кабель (состоит из тонких – в 5-60 микрон-волокон, по которым распространяются световые сигналы).
Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Различные типы радиоканалов отличаются используемым частотным диапазоном и дальностью передачи информации. Радиоканалы, работающие в диапазонах коротких, средних и длинных волн (КВ, СВ, ДВ), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Это радиоканалы, где используется амплитудная модуляция сигналов. Каналы, работающие на диапазонах ультракоротких волн (УКВ), являются более скоростными, для них характерна частотная модуляция сигналов. Сверхскоростными являются каналы, работающие на диапазонах сверхвысоких частот (СВЧ), т. е. свыше 4 ГГц. В диапазоне СВЧ сигналы не отражаются ионосферой Земли, поэтому для устойчивой связи требуется прямая видимость между передатчиком и приемником. По этой причине сигналы СВЧ используются либо в спутниковых каналах, либо в радиорелейных, где это условие выполняется.
Характеристики линий связи. К основным характеристикам линий связи относятся следующие: амплитудно-частотная характеристика, полоса пропускания, затухание, пропускная способность, помехоустойчивость, перекрестные наводки на ближнем конце линии, достоверность передачи данных, удельная стоимость.
Характеристики линии связи часто определяются путем анализа ее реакций на некоторые эталонные воздействия, в качестве которых используются синусоидальные колебания различных частот, поскольку они часто встречаются в технике и с их помощью можно представить любую функцию времени. Степень искажения синусоидальных сигналов линии связи оценивается с помощью амплитудно-частотной характеристики, полосы пропускания и затухания на определенной частоте.
Амплитудно-частотная характеристика (АЧХ) дает наиболее полное представление о линии связи, она показывает, как затухает амплитуда синусоиды на выходе линии по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала.
Полоса пропускания линии связи представляет собой непрерывный диапазон частот, в котором отношение амплитуды выходного сигнала ко входному превышает заранее заданный предел (обычно 0,5). Полоса пропускания зависит от типа линии и ее протяженности.
Затухание – это относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты.
Пропускная способность линии связи – это ее характеристика, определяющая (как и ширина полосы пропускания) максимально возможную скорость передачи данных по линии. Она измеряется в битах в секунду (бит/с), а так-же в производных единицах (Кбит/с, Мбит/с, Гбит/с).
Помехоустойчивость линии связи – это ее способность уменьшать на внутренних проводниках уровень помех, создаваемых во внешней среде. Она зависит от типа используемой физической среды, а также от средств линии, экранирующих и подавляющих помехи. Наиболее помехоустойчивыми, малочувствительными ко внешнему электромагнитному излучению, являются волоконно-оптические линии, наименее помехоустойчивыми – радиолинии,промежуточное положение занимают кабельные линии.
Достоверность передачи данных (или интенсивность битовых ошибок) характеризует вероятность искажения для каждого передаваемого бита данных. Причинами искажения информационных сигналов являются помехи на линии, а также ограниченность полосы ее пропускания.
Факс (англ. Fax, сокращ. от facsimile, от лат. fac simile, "делать одинаково"), Факсими́льная связь — телекоммуникационная технология передачи изображений электрическими сигналами. Исторически включалась в состав телеграфной связи и является разновидностьюэлектросвязи.
Факсимильная связь включает в себя основные операции:
деление всей площади предназначенного для передачи оригинала на большое количество элементов малого размера, отличающихся друг от друга по какому-либо определённому физическому параметру. Типично для изображений — по оптической плотности;
последовательное измерение для каждого такого элемента этого физического параметра, преобразование в величину электрического тока или в набор электрических импульсов, в соответствии с предусмотренным протоколом связи;
трансляция сигнала по линии связи;
преобразование полученного сигнала, как правило, синхронное и синфазное процессу передачи, запись в приёмном устройстве полученной информации.
Тракт факсимильной связи включает передатчик, линию связи и приёмник.
Части современного офисного факс-аппарата
Сканер, в большинстве случаев — протяжного типа;
принтер с устройством подачи рулонной (реже — листовой) бумаги;
модем — модулятор-демодулятор электрического сигнала;
узлы телефонного аппарата — номеронабиратель, телефонная трубка.
Современный факсовый аппарат в конкретном сеансе передачи факсимильного сообщения может выступать как приёмник или как передатчик.
По мере удешевления компьютерного оборудования и доступа к сети Интернет всё чаще для передачи изображений используется подключённый к сети компьютер общего назначения, имеющий принтер, сканер. Такой тип компьютеров по цели использования иногда носит отдельное название «Офисный компьютер». В ряде случаев использование такого компьютера именно в процессе передачи изображений также называют «факсимильной связью». Главным преимуществом перед традиционным факсом является отсутствие необходимости в синхронной и синфазной работе всех элементов тракта связи. Благодаря же создаваемым факс-гейтам точная граница между традиционной факсимильной связью и такой компьютерной отсутствует совершенно.
Считается, что факсимильная связь вытесняется электронной почтой и иными средствами передачи файлов, однако ее роль в современном бизнесе уменьшается достаточно медленными темпами. Помимо удобства и простоты этого вида связи, значительную роль играет распространенность факсимильных аппаратов, возможность передачи цветных изображений, а также нежелание некоторых организаций переходить на иные методы связи, поскольку это потребует капитальных затрат и усилий на переподготовку персонала. Кроме того, современные факсы имеют возможность использовать обычную писчую бумагу взамен использовавшейся ранее специальной термобумаги.
Флэш-карты
Стоило компьютерам научиться обрабатывать массивы данных, появилась проблема, где и как хранить и переносить эти данные. Решений нашлось много – от бумажных перфокарт до магнитных лент и дисков. У каждой из технологий было множество своих плюсов и, как водится еще больше минусов.
Все мы склонны к лени, ищем наиболее приятные и комфортные условия, и не готовы идти на жертвы, если этого не требует мода. И поэтому, как только персональный компьютер потерял статус престижной и дорогой игрушки, пользователи все в более требовательной форме стали намекать производителям на неудобства обращения с ними.
Сегодня предмет нашего разговора – сменная память. К этой разновидности памяти пользователи предъявляют несколько скромных требований:
Энергонезависимость – т.е. не нуждаться в батарейках, неожиданная разрядка которых приведет к потере информации.
Надежность – не потерять данные под воздействием грозы, падении или при попадании в лужу.
Компактной – чтобы не размышлять, а стоит ли тащить все это с собой.
Долговечной – чтобы не бегать в магазин каждый месяц за новой, т.к. старая отслужила свой срок.
Универсальной – совместимой со множеством устройств, в которых могут потребоваться данные.
Пятнадцать лет назад компания Toshiba придумала технологию энергонезависимой полупроводниковой памяти, которую она назвала флэш-памятью. Микросхемы, сохраняющие данные после отключения питания были известны и ранее (BIOS), но с такой памятью было связанно много неудобств: для записи требовались специальные устройства-программаторы, а, чтобы стереть информацию приходилось применять ультрафиолетовое облучение кристалла. Флэш-память позволяет записывать и стирать данные без таких сложностей, благодаря чему обладает неплохим быстродействием и, к тому же, достаточно надежна.
Вскоре чипы флэш-памяти стали встраивать в различные устройства, а на их основе были созданы флэш-карты, с помощью которых можно было транспортировать различные данные.