Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект ТОМД Раздел 1.doc
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
16.27 Mб
Скачать

Закон Гука

Под действием внешних сил в деформированном теле первоначально возникают упругие деформации, характеризующиеся упругими отклонениями атомов от положения устойчивого равновесия. Чем больше деформируемая сила, тем больше упругая деформация. Связь между напряжением и упругой деформацией в направлении силы определяется законом Гука:

где - относительная деформация в направлении действия силы;

- деформирующие напряжения;

- модуль упругости;

В направлении, перпендикулярном действию силы, возникают упругие деформации другого знака. Если в направлении действия силы имеет место деформация растяжения, то в поперечном направлении будет деформация сжатия и, наоборот, если в направлении действия силы возникает деформация сжатия, то в перпендикулярном – деформация растяжения.

Поперечная упругая деформация пропорциональная продольной:

где - упругая относительная деформация в направлении, перпендикулярном действию силы;

- упругая относительная деформация в направлении действия силы;

- коэффициент Пуассона - коэффициент пропорциональности продольных и поперечных упругих деформации;

Величина коэффициента Пуассона зависит от природы деформируемого вещества и характеризует изменение объема при упругой деформации. Если бы объем металла не изменялся, то коэффициент Пуассона был бы равен 0,5. Фактически в процессе упругой деформации объем металла изменяется и коэффициент Пуассона всегда меньше 0,5 для стали он равен примерно 0,3.

Зависимость между напряжением и деформацией

Экспериментально зависимость между деформациями в условиях линейного напряженного состояния получается при испытании стандартных образцов на растяжение. На основе проведенных испытаний строят диаграммы.

Условные напряжения – это те напряжения, которые находятся следующим способом: растягивающая сила делится на исходную площадь поперечного сечения образца, а изменение размеров этой площади происходит в процессе деформации.

Рисунок 27 – Диаграмма напряжений при растяжении образца из малоуглеродистой стали

На участке ОА сохраняется пропорциональность между напряжением и деформациями, т.е. наблюдается закон Гука. Наибольшее напряжение называют пределом пропорциональности. Если нагруженный образец постепенно разгружать, то соотношения между напряжением и деформацией в каждый момент разгрузки будет определяться линией ОА и, когда нагрузка будет полностью снята, деформация полностью исчезнет и образец примет свои первоначальные размеры. При разгрузке образца от напряжений, превышающих , например от , соотношения между напряжениями и деформациями будут определяться линией, параллельной ОА. При полном удалении нагрузки в этом случае исчезнет только упругая часть деформации и сохранится остаточная деформация . Напряжение , превышение которого вызывает незначительные (порядка 0,001-0,03%) остаточные деформации, называется пределом упругости.

На участке CD деформация увеличивается при постоянном напряжении, этот участок называется площадкой текучести, а напряжение, соответствующее ему, - пределом текучести. У многих металлов диаграмма растяжения не имеет ярко выраженной площадки текучести. В таких случаях за предел текучести принимают напряжение, при котором получается остаточная деформация в 0,2%.

На участке деформации DE условные напряжения по мере возрастания деформации увеличиваются, отражая влияние наклепа. Наибольшее условное напряжение на диаграмме называют пределом прочности, так как оно соответствует наибольшей нагрузке, которую, может выдержать образец не разрушаясь.

Из отмеченных характерных точек на диаграмме напряжений для обработки давлением наибольшую важность представляет предел текучести. Считают, что пластическая деформация в условиях линейного напряженного состояния начинается тогда, когда нормальные напряжения станут равными пределу текучести.

Следует иметь ввиду, что предел текучести, являющийся важной стандартной характеристикой металла, определяется при комнатной температуре. В отличии от него аналогичные характеристики, определенные при других температурах или других иных условиях, часто называют сопротивлением деформации в условиях линейного напряженного состояния и обозначают k или 2k.

Упругие деформации, несмотря на их малую величину, представляют в процессах обработки металлов давлением большую важность по следующим причинам:

  1. С упругими деформациями связано появление напряжений, необходимых для осуществления пластической деформации. Без упругих деформаций не может быть напряжений, как и без напряжений не может быть упругой деформации. Поэтому упругая деформация всегда предшествует пластической деформации и сопровождает ее;

  2. В связи с упругими деформациями размеры деформируемого тела, инструмента, деталей машин – орудий, которые имеют место при завершении деформации, изменяются при удалении деформирующей силы. Хотя такие изменения и невелики, их приходится учитывать при изготовлении точных изделий;