
- •Л. Б. Бузюков, о. Б. Петрова
- •Учебное пособие
- •Предисловие
- •Глава 1. Введение в язык с
- •1.1. История создания и особенности языка с
- •1.3. Элементы языка с
- •1.3.1. Основные символы
- •1.3.2. Ключевые слова
- •1.3.3. Идентификаторы
- •1.3.4. Константы
- •1.3.5. Лексемы
- •1.3.6. Комментарии
- •Глава 2. Типы данных языка c
- •2.1. Числовые типы данных
- •2.2. Объявление переменных
- •2.3. Данные целого типа
- •2.4. Данные вещественного типа
- •Глава 3. Выражения
- •3.1. Операции
- •3.1.1. Арифметические операции
- •3.1.2. Операция присваивания
- •Глава 4. Составление простейших программ
- •4.1. Препроцессор и его функции
- •4.2. Основные директивы препроцессора
- •4.2.1. Директива include
- •4.2.2. Директива define
- •4.2.3. Директива undef
- •4.3. Структура и правила составления программ
- •4.3.1. Структура функции
- •4.3.2. Функция main()
- •4.3.3. Структура простой программы
- •4.3.4. Правила записи объявлений, операторов и комментариев
- •4.3.5. Пример простейшей программы
- •Глава 5. Средства ввода/вывода
- •5.1. Общие замечания
- •5.2. Функция форматированного вывода printf()
- •5.2.1. Основные форматы
- •5.2.2. Модификации форматов
- •5.3. Функция форматированного ввода scanf()
- •Глава 6. Управляющие операторы
- •6.1. Условные операторы
- •6.1.1. Логические выражения
- •6.1.2. Формы оператора if
- •6.1.3. Оператор выбора switch
- •6.2. Операторы цикла
- •6.2.1. Оператор while
- •6.2.2. Оператор for
- •6.2.3. Оператор do-while
- •6.3. Операторы перехода
- •6.3.1. Оператор break
- •6.3.2. Оператор continue
- •6.3.3. Оператор return
- •6.3.4. Применение оператора goto и меток
- •Глава 7. Функции
- •7.1. Основные понятия
- •7.2. Определение функции
- •7.3. Прототип функции
- •7.4. Вызов функции
- •Глава 8. Классы памяти
- •8.1. Логическаяструктура памяти программы
- •8.2. Особенности классов памяти
- •8.3. Объявления переменных
- •8.4. Объявления функций
- •8.5. Время жизни и область видимости программных объектов
- •8.6. Инициализация глобальных и локальных переменных
- •Глава 9. Указатели
- •9.1. Операция получения адреса
- •9.2. Операции над указателями
- •Глава 10. Массивы
- •10.1. Общие сведения о массивах
- •10.2. Одномерные массивы
- •10.3. Двумерные массивы
- •10.4. Массивы и указатели
- •10.5. Массивы и функции
- •Глава 11. Строки
- •11.1. Представление символьной строки при помощи одномерного массива
- •11.2. Указатель на символьную строку
- •11.3. Ввод/вывод символьных строк
- •11.4. Массивы символьных строк
- •11.5. Функции работы состроками
- •Глава 12. Структуры
- •12.1. Определение структуры
- •12.2. Структуры и функции
- •12.3. Указатели на структуру
- •12.4. Массивы структур
- •12.5. Вложенные структуры
- •12.6. Использование синонима типа
- •12.7. Объединения
- •Глава 13. Файлы
- •13.1. Работа с файлами
- •13.2. Функции ввода/вывода
- •Глава 14. Динамическая память
- •14.1. Распределение памяти
- •14.2. Функции управление памятью
- •Глава 15. Проект
- •15.1. Основы создания проекта
- •15.2. Пример создания проекта
- •Глава 17. Основы объектно-ориентированного программирования
- •17.1. Объектно-ориентированный подход
- •17.3. Конструкторы и деструкторы
- •17.4. Инкапсуляция
- •17.5. Полиморфизм
- •17.6. Наследование
- •17.7. Виды взаимодействия классов
- •17.8. Способы графического представления объектно-ориентированной задачи
- •18.2. Библиотека Win32 api
- •18.3. Библиотека owl
- •18.4. Библиотека vcl
- •18.5. Библиотека clx
- •18.6. Библиотека mfc
- •18.7. Библиотека OpenGl
- •19.3. Создание проекта
- •19.4. Редактирование проекта
- •19.5. Компиляция и выполнение программы
- •19.6. Файловая структура проекта
- •19.7. Создание консольного приложения
- •Глава 20. Разработка приложений для операционных систем windows
- •20.1. Взаимодействие программы и Windows
- •20.2. Компоненты библиотеки Win32 api
- •20.3.Функция WinMain()
- •20.4. Оконная процедура
- •20.5. Структура программы для ос Windows
- •20.6. Ресурсы Windows
- •20.7. Взаимодействие прикладной программы и устройств в Windows
- •Глава 21. Создание приложений для ос windows на основе библиотеки mfc
- •21.1. Обзор классов библиотеки mfc
- •21.2. Класс cString
- •21.3. Класс cFile
- •21.4. Класс cPoint
- •21.5. Класс cRect
- •21.7. Приложение, основанное на диалоге
- •21.8. Использование в приложении элементов управления
- •21.9. Мастер классов mfc ClassWizard
- •21.10. Установка начального значения элементам управления
- •21.11. Элементы управления Picture
- •21.12. Элемент управления Group Box
- •21.13. Элемент управления Radio Button
- •21.14. Элемент управления Check Box
- •21.15. Элемент управления List Box
- •21.16. Создание меню
- •21.17. Приложение с двумя диалоговыми панелями
- •21.18. Приложение sdi
- •21.19. Создание панели инструментов
- •21.20. Приложение mdi
- •21.21. Контекстыустройств в mfc
- •21.22. Графические объекты Windows в mfc
- •21.23. Графические операции в mfc
- •П.1. Основы методологии конструирования программ
- •П.1.1. Основные понятия. Программа и алгоритм
- •П.1.2. Этапы разработки программ
- •П.2. Алгоритмы
- •П.2.1. Алгоритм и его свойства
- •П.2.2. Способы описания алгоритмов
- •П.2.3. Средства графического изображения алгоритмов Схемы алгоритмов
- •Псевдокоды
- •Структурограммы
- •П.3. Основные приемы программирования
- •П.3.1. Разновидности структур программирования
- •П.3.2. Программирование линейных и разветвляющихся процессов
- •П.3.3. Программирование циклических процессов
- •Арифметический цикл (цикл с параметром)
- •Итерационный цикл
- •Вложенный цикл
- •Литература
П.2. Алгоритмы
П.2.1. Алгоритм и его свойства П.2.2. Способы описания алгоритмов П.2.3. Средства графического изображения алгоритмов
П.2.1. Алгоритм и его свойства
Как уже отмечалось, под алгоритмом понимается совокупность действий, необходимых для решения задачи. Алгоритм отличается от программы тем, что в нем содержится только описание действий, производимых над данными, но полностью отсутствуют какие-либо описания данных. Алгоритмы содержат определение пошагового процесса обработки данных с описанием преобразований данных и функций управления.
Основные свойства любого алгоритма:
детерминированность – однозначность получаемых результатов при одних и тех же исходных данных;
результативность – обязательное получение искомого результата либо сигнала ошибки;
массовость – возможность получения искомого результата при различных исходных данных;
дискретность – возможность разбиения на элементарные действия.
Каждая научная дисциплина имеет свои методы получения результатов. Основное различие задач заключается в том, что для одних существуют прямые методы решения, а другие не могут быть решены без дополнительной информации, получаемой в ходе решения задачи.
Если задача может быть решена прямым способом, говорят, что она имеет детерминированный метод решения, в котором отсутствуют неопределенность, произвольность в выборе решений, определяющих последовательность действий. Для синтеза детерминированных алгоритмов недопустимо применение методов проб и ошибок. К таким задачам относятся, в основном, математические уравнения.
Если решение задачи выбирается из заранее определенного множества вариантов, говорят о недетермиинированном методе решения. В реализации недетерминированного алгоритма используются методы проб и ошибок, повторов, случайного выбора. К числу подобных задач относятся задачи оптимизации, транспортные задачи, задачи сортировки и поиска.
Третий тип алгоритмов предназначен не для поиска ответа на поставленную задачу, а для моделирования физических систем с помощью ЭВМ.
Выполнение алгоритмов определяется следующими правилами:
последовательность действий;
альтернативность действий;
использование повторений действий;
использование вспомогательных алгоримов.
Главная особенность любого алгоритма – формальное исполнение, позволяющее выполнять заданные действия (команды) различным техническим устройствам (исполнителям). Множество команд, которые в состоянии выполнить данный исполнитель, называется системой команд исполнителя. Алгоритм может быть понят и выполнен только в том случае, если каждая его команда входит в эту систему.
П.2.2. Способы описания алгоритмов
На любой стадии существования алгоритмы и программы представляют с помощью конкретных изобразительных средств, состав и правила употребления которых образуют конкретные способы или формы записи.
К настоящему времени сложились пять наиболее употребительных способов записи: словесный, формульно-словесный, графический, при помощи псевдокодов и языков программирования.
Словесное задание описывает алгоритм – инструкцию о выполнении действий в определенной последовательности с помощью слов и предложений естественного языка. Форма изложения произвольна и устанавливается разработчиком.
В формульно-словесном способе записи инструкция о действиях содержит формальные символы и выражения (формулы) в сочетании со словесными пояснениями.
Графическая запись или схема – это изображение алгоритма с помощью геометрических фигур, называемых блоками. Последовательность блоков и соединительных линий образуют схему.
Наряду со схемами для изображения алгоритмов широко используется псевдокод. Псевдокодом называется система правил записи алгоритма с использованием набора определенных конструкций для описания управляющих действий.
Псевдокод позволяет формально изображать логику алгоритма, используя стандартизированные конструкции естественного языка для изображения управления и сохраняя возможности языка для описания действий по обработке информации. Данный способ тесно связан со структурным подходом к программированию. Псевдокод занимает промежуточное положение между естественным языком и языком программирования. Его применяют преимущественно для того, чтобы подробнее объяснить работу программы, что облегчает проверку правильности программы. Кроме того, псевдокод дает программисту большую свободу в изображении алгоритма. Требуется только употреблять стандартные управляющие конструкции и правила записи.
Последним способом записи алгоритмов является язык программирования. Рассмотренные выше способы удобны для программиста, но не приемлемы для ЭВМ, поскольку они не могут быть однозначно поняты.
Язык программирования – это знаковая система, предназначенная для описания процессов решения задач и их реализации на ЭВМ. Реализация означает, что описания могут быть введены в ЭВМ и однозначно ею поняты. К языкам программирования относятся языки команд или машинные языки и языки высокого уровня.
Первая группа представляет собственный язык ЭВМ, и исполнение программы возможно только в том случае, если она записана на этом языке.
Однако программировать на машинном языке достаточно трудно, что обусловлено чрезмерной детализацией программы, необходимостью знать конкретную систему команд и детально представлять работу ЭВМ. Представление сложной программы на машинном языке неудобно для восприятия человеком.
Эти недостатки послужили стимулом для создания языков программирования высокого уровня, не совпадающих с машинными.
Идея таких языков состоит в представлении программ в виде не только приемлемом для ЭВМ, но и удобном для пользователя.
Удобство означает, что способ записи должен отражать основные идеи программирования и представлять программу в однозначной, естественной и легко воспринимаемой форме.
Приемлемость означает, что программа может быть введена в ЭВМ и однозначно понята, т. е. однозначно переведена на машинный язык.
Языки программирования высокого уровня дают программисту большую свободу в конструировании программ, но не освобождают его от необходимости учитывать тот факт, что именно ЭВМ будет выполнять его программу и что она накладывает на программу ограничения, обусловленные конечностью ее скорости и памяти.