
- •Thinking in C++ 2nd edition Volume 2: Standard Libraries & Advanced Topics
- •Preface
- •What’s new in the second edition
- •What’s in Volume 2 of this book
- •How to get Volume 2
- •Prerequisites
- •Learning C++
- •Goals
- •Chapters
- •Exercises
- •Exercise solutions
- •Source code
- •Language standards
- •Language support
- •The book’s CD ROM
- •Seminars, CD Roms & consulting
- •Errors
- •Acknowledgements
- •Library overview
- •1: Strings
- •What’s in a string
- •Creating and initializing C++ strings
- •Initialization limitations
- •Operating on strings
- •Appending, inserting and concatenating strings
- •Replacing string characters
- •Concatenation using non-member overloaded operators
- •Searching in strings
- •Finding in reverse
- •Finding first/last of a set
- •Removing characters from strings
- •Stripping HTML tags
- •Comparing strings
- •Using iterators
- •Iterating in reverse
- •Strings and character traits
- •A string application
- •Summary
- •Exercises
- •2: Iostreams
- •Why iostreams?
- •True wrapping
- •Iostreams to the rescue
- •Sneak preview of operator overloading
- •Inserters and extractors
- •Manipulators
- •Common usage
- •Line-oriented input
- •Overloaded versions of get( )
- •Reading raw bytes
- •Error handling
- •File iostreams
- •Open modes
- •Iostream buffering
- •Seeking in iostreams
- •Creating read/write files
- •User-allocated storage
- •Output strstreams
- •Automatic storage allocation
- •Proving movement
- •A better way
- •Output stream formatting
- •Internal formatting data
- •Format fields
- •Width, fill and precision
- •An exhaustive example
- •Formatting manipulators
- •Manipulators with arguments
- •Creating manipulators
- •Effectors
- •Iostream examples
- •Code generation
- •Maintaining class library source
- •Detecting compiler errors
- •A simple datalogger
- •Generating test data
- •Verifying & viewing the data
- •Counting editor
- •Breaking up big files
- •Summary
- •Exercises
- •3: Templates in depth
- •Nontype template arguments
- •Typedefing a typename
- •Using typename instead of class
- •Function templates
- •A string conversion system
- •A memory allocation system
- •Type induction in function templates
- •Taking the address of a generated function template
- •Local classes in templates
- •Applying a function to an STL sequence
- •Template-templates
- •Member function templates
- •Why virtual member template functions are disallowed
- •Nested template classes
- •Template specializations
- •A practical example
- •Pointer specialization
- •Partial ordering of function templates
- •Design & efficiency
- •Preventing template bloat
- •Explicit instantiation
- •Explicit specification of template functions
- •Controlling template instantiation
- •Template programming idioms
- •Summary
- •Containers and iterators
- •STL reference documentation
- •The Standard Template Library
- •The basic concepts
- •Containers of strings
- •Inheriting from STL containers
- •A plethora of iterators
- •Iterators in reversible containers
- •Iterator categories
- •Input: read-only, one pass
- •Output: write-only, one pass
- •Forward: multiple read/write
- •Bidirectional: operator--
- •Random-access: like a pointer
- •Is this really important?
- •Predefined iterators
- •IO stream iterators
- •Manipulating raw storage
- •Basic sequences: vector, list & deque
- •Basic sequence operations
- •vector
- •Cost of overflowing allocated storage
- •Inserting and erasing elements
- •deque
- •Converting between sequences
- •Cost of overflowing allocated storage
- •Checked random-access
- •list
- •Special list operations
- •list vs. set
- •Swapping all basic sequences
- •Robustness of lists
- •Performance comparison
- •A completely reusable tokenizer
- •stack
- •queue
- •Priority queues
- •Holding bits
- •bitset<n>
- •vector<bool>
- •Associative containers
- •Generators and fillers for associative containers
- •The magic of maps
- •A command-line argument tool
- •Multimaps and duplicate keys
- •Multisets
- •Combining STL containers
- •Creating your own containers
- •Summary
- •Exercises
- •5: STL Algorithms
- •Function objects
- •Classification of function objects
- •Automatic creation of function objects
- •Binders
- •Function pointer adapters
- •SGI extensions
- •A catalog of STL algorithms
- •Support tools for example creation
- •Filling & generating
- •Example
- •Counting
- •Example
- •Manipulating sequences
- •Example
- •Searching & replacing
- •Example
- •Comparing ranges
- •Example
- •Removing elements
- •Example
- •Sorting and operations on sorted ranges
- •Sorting
- •Example
- •Locating elements in sorted ranges
- •Example
- •Merging sorted ranges
- •Example
- •Set operations on sorted ranges
- •Example
- •Heap operations
- •Applying an operation to each element in a range
- •Examples
- •Numeric algorithms
- •Example
- •General utilities
- •Creating your own STL-style algorithms
- •Summary
- •Exercises
- •Perspective
- •Duplicate subobjects
- •Ambiguous upcasting
- •virtual base classes
- •The "most derived" class and virtual base initialization
- •"Tying off" virtual bases with a default constructor
- •Overhead
- •Upcasting
- •Persistence
- •MI-based persistence
- •Improved persistence
- •Avoiding MI
- •Mixin types
- •Repairing an interface
- •Summary
- •Exercises
- •7: Exception handling
- •Error handling in C
- •Throwing an exception
- •Catching an exception
- •The try block
- •Exception handlers
- •Termination vs. resumption
- •The exception specification
- •Better exception specifications?
- •Catching any exception
- •Rethrowing an exception
- •Uncaught exceptions
- •Function-level try blocks
- •Cleaning up
- •Constructors
- •Making everything an object
- •Exception matching
- •Standard exceptions
- •Programming with exceptions
- •When to avoid exceptions
- •Not for asynchronous events
- •Not for ordinary error conditions
- •Not for flow-of-control
- •You’re not forced to use exceptions
- •New exceptions, old code
- •Typical uses of exceptions
- •Always use exception specifications
- •Start with standard exceptions
- •Nest your own exceptions
- •Use exception hierarchies
- •Multiple inheritance
- •Catch by reference, not by value
- •Throw exceptions in constructors
- •Don’t cause exceptions in destructors
- •Avoid naked pointers
- •Overhead
- •Summary
- •Exercises
- •8: Run-time type identification
- •The “Shape” example
- •What is RTTI?
- •Two syntaxes for RTTI
- •Syntax specifics
- •Producing the proper type name
- •Nonpolymorphic types
- •Casting to intermediate levels
- •void pointers
- •Using RTTI with templates
- •References
- •Exceptions
- •Multiple inheritance
- •Sensible uses for RTTI
- •Revisiting the trash recycler
- •Mechanism & overhead of RTTI
- •Creating your own RTTI
- •Explicit cast syntax
- •Summary
- •Exercises
- •9: Building stable systems
- •Shared objects & reference counting
- •Reference-counted class hierarchies
- •Finding memory leaks
- •An extended canonical form
- •Exercises
- •10: Design patterns
- •The pattern concept
- •The singleton
- •Variations on singleton
- •Classifying patterns
- •Features, idioms, patterns
- •Basic complexity hiding
- •Factories: encapsulating object creation
- •Polymorphic factories
- •Abstract factories
- •Virtual constructors
- •Destructor operation
- •Callbacks
- •Observer
- •The “interface” idiom
- •The “inner class” idiom
- •The observer example
- •Multiple dispatching
- •Visitor, a type of multiple dispatching
- •Efficiency
- •Flyweight
- •The composite
- •Evolving a design: the trash recycler
- •Improving the design
- •“Make more objects”
- •A pattern for prototyping creation
- •Trash subclasses
- •Parsing Trash from an external file
- •Recycling with prototyping
- •Abstracting usage
- •Applying double dispatching
- •Implementing the double dispatch
- •Applying the visitor pattern
- •More coupling?
- •RTTI considered harmful?
- •Summary
- •Exercises
- •11: Tools & topics
- •The code extractor
- •Debugging
- •Trace macros
- •Trace file
- •Abstract base class for debugging
- •Tracking new/delete & malloc/free
- •CGI programming in C++
- •Encoding data for CGI
- •The CGI parser
- •Testing the CGI parser
- •Using POST
- •Handling mailing lists
- •Maintaining your list
- •Mailing to your list
- •A general information-extraction CGI program
- •Parsing the data files
- •Summary
- •Exercises
- •General C++
- •My own list of books
- •Depth & dark corners
- •Design Patterns
- •Index

As they are destroyed or in other cases where the pointers are removed, the STL containers do not call delete for the pointers they contain. If you create an object on the heap with new and place its pointer in a container, the container can’t tell if that pointer is also placed inside another container. So the STL just doesn’t do anything about it, and puts the responsibility squarely in your lap. The last lines in the program move through and delete every object in the container so proper cleanup occurs.
It’s very interesting to note that you can change the type of container that this program uses with two lines. Instead of including <vector>, you include <list>, and in the first typedef you say:
typedef std::list<Shape*> Container;
instead of using a vector. Everything else goes untouched. This is possible not because of an interface enforced by inheritance (there isn’t any inheritance in the STL, which comes as a surprise when you first see it), but because the interface is enforced by a convention adopted by the designers of the STL, precisely so you could perform this kind of interchange. Now you can easily switch between vector and list and see which one works fastest for your needs.
Containers of strings
In the prior example, at the end of main( ), it was necessary to move through the whole list and delete all the Shape pointers.
for(Iter j = shapes.begin(); j != shapes.end(); j++)
delete *j;
This highlights what could be seen as a flaw in the STL: there’s no facility in any of the STL containers to automatically delete the pointers they contain, so you must do it by hand. It’s as if the assumption of the STL designers was that containers of pointers weren’t an interesting problem, although I assert that it is one of the more common things you’ll want to do.
Automatically deleting a pointer turns out to be a rather aggressive thing to do because of the multiple membership problem. If a container holds a pointer to an object, it’s not unlikely that pointer could also be in another container. A pointer to an Aluminum object in a list of Trash pointers could also reside in a list of Aluminum pointers. If that happens, which list is responsible for cleaning up that object – that is, which list “owns” the object?
This question is virtually eliminated if the object rather than a pointer resides in the list. Then it seems clear that when the list is destroyed, the objects it contains must also be destroyed. Here, the STL shines, as you can see when creating a container of string objects. The following example stores each incoming line as a string in a vector<string>:
//: C04:StringVector.cpp // A vector of strings #include "../require.h"
Chapter 15: Multiple Inheritance
155

#include <string> #include <vector> #include <fstream> #include <iostream> #include <iterator> #include <sstream> using namespace std;
int main(int argc, char* argv[]) { requireArgs(argc, 1);
ifstream in(argv[1]); assure(in, argv[1]); vector<string> strings; string line; while(getline(in, line))
strings.push_back(line);
// Do something to the strings...
int i = 1; vector<string>::iterator w; for(w = strings.begin();
w != strings.end(); w++) { ostringstream ss;
ss << i++;
*w = ss.str() + ": " + *w;
}
//Now send them out: copy(strings.begin(), strings.end(),
ostream_iterator<string>(cout, "\n"));
//Since they aren't pointers, string
//objects clean themselves up!
}///:~
Once the vector<string> called strings is created, each line in the file is read into a string and put in the vector:
while(getline(in, line)) strings.push_back(line);
The operation that’s being performed on this file is to add line numbers. A stringstream provides easy conversion from an int to a string of characters representing that int.
Assembling string objects is quite easy, since operator+ is overloaded. Sensibly enough, the iterator w can be dereferenced to produce a string that can be used as both an rvalue and an lvalue:
*w = ss.str() + ": " + *w;
Chapter 15: Multiple Inheritance
156

The fact that you can assign back into the container via the iterator may seem a bit surprising at first, but it’s a tribute to the careful design of the STL.
Because the vector<string> contains the objects themselves, a number of interesting things take place. First, no cleanup is necessary. Even if you were to put addresses of the string objects as pointers into other containers, it’s clear that strings is the “master list” and maintains ownership of the objects.
Second, you are effectively using dynamic object creation, and yet you never use new or delete! That’s because, somehow, it’s all taken care of for you by the vector (this is nontrivial. You can try to figure it out by looking at the header files for the STL – all the code is there – but it’s quite an exercise). Thus your coding is significantly cleaned up.
The limitation of holding objects instead of pointers inside containers is quite severe: you can’t upcast from derived types, thus you can’t use polymorphism. The problem with upcasting objects by value is that they get sliced and converted until their type is completely changed into the base type, and there’s no remnant of the derived type left. It’s pretty safe to say that you never want to do this.
Inheriting from STL containers
The power of instantly creating a sequence of elements is amazing, and it makes you realize how much time you’ve spent (or rather, wasted) in the past solving this particular problem. For example, many utility programs involve reading a file into memory, modifying the file and writing it back out to disk. One might as well take the functionality in StringVector.cpp and package it into a class for later reuse.
Now the question is: do you create a member object of type vector, or do you inherit? A general guideline is to always prefer composition (member objects) over inheritance, but with the STL this is often not true, because there are so many existing algorithms that work with the STL types that you may want your new type to be an STL type. So the list of strings should also be a vector, thus inheritance is desired.
//: C04:FileEditor.h // File editor tool #ifndef FILEEDITOR_H #define FILEEDITOR_H #include <string> #include <vector> #include <iostream>
class FileEditor :
public std::vector<std::string> { public:
FileEditor(char* filename);
Chapter 15: Multiple Inheritance
157

void write(std::ostream& out = std::cout);
};
#endif // FILEEDITOR_H ///:~
Note the careful avoidance of a global using namespace std statement here, to prevent the opening of the std namespace to every file that includes this header.
The constructor opens the file and reads it into the FileEditor, and write( ) puts the vector of string onto any ostream. Notice in write( ) that you can have a default argument for a reference.
The implementation is quite simple:
//: C04:FileEditor.cpp {O} #include "FileEditor.h" #include "../require.h" #include <fstream>
using namespace std;
FileEditor::FileEditor(char* filename) { ifstream in(filename);
assure(in, filename); string line; while(getline(in, line))
push_back(line);
}
// Could also use copy() here:
void FileEditor::write(ostream& out) { for(iterator w = begin(); w != end(); w++)
out << *w << endl; } ///:~
The functions from StringVector.cpp are simply repackaged. Often this is the way classes evolve – you start by creating a program to solve a particular application, then discover some commonly-used functionality within the program that can be turned into a class.
The line numbering program can now be rewritten using FileEditor:
//: C04:FEditTest.cpp //{L} FileEditor
// Test the FileEditor tool #include "FileEditor.h" #include "../require.h" #include <sstream>
using namespace std;
Chapter 15: Multiple Inheritance
158