
- •Введение
- •1. Основные сведения из формальной логики
- •1.1. Введение в формальную логику
- •1.2. Формы познания человеком окружающего мира
- •1.3. Формы абстрактного мышления
- •«Все s есть p»,
- •«Если s есть p, то s есть p1».
- •1.4. Содержательное описание основных законов классической формальной логики и границы их применимости
- •1.5. Способы правильных умозаключений, обусловленных основными законами формальной логики.
- •1.6. Правильные способы рассуждений, основанные на теории силлогизмов
- •Вопросы для самоконтроля
- •2. Элементы теории множеств
- •2.1. Понятие множества. Способы задания множеств
- •Упражнения
- •2.2. Части множеств
- •2.2.1. Понятие подмножества
- •2.2.2. Множество-степень
- •2.2.3. Понятие о верхней и нижней гранях множеств
- •2.3. Операции над множествами.
- •2.4. Основные свойства операций над множествами
- •2.5. Отношения на множествах
- •2.5.1. Операции над отношениями
- •2.5.2. Основные свойства отношений
- •2.6. Функции как отношения на множествах
- •2.7. Отношения эквивалентности
- •2.8. Отношения порядка
- •Упражнения
- •Парадоксы теории множеств
- •Вопросы для самоконтроля
- •1. Алгебра логики
- •Понятие о простом и сложном высказывании
- •Упражнения
- •Логические операции над высказываниями
- •Упражнения
- •Упражнения
- •1.4. Аксиомы и законы алгебры логики
- •1.4.1. Правила склеивания для элементарных конъюнкций и дизъюнкций
- •Дизъюнкций
- •1.4.3. Правило развёртывания
- •Все ке для двух высказываний
- •Развёртывание элементарной дизъюнкции
- •Упражнения
- •1.5. Функции алгебры логики. Нормальные формы логических функций
- •Общая запись любой логической функции в сндф имеет вид
- •Пример. По заданной таблице истинности составить сндф функций
- •Снкф для выше приведенной таблицы истинности будут иметь вид
- •Упражнения
- •1.6.Минимизация логических функций
- •1.6.1. Расчетный метод минимизации
- •1.6.2. Табличный метод минимизации
- •1.6.3. Расчетно-табличный метод минимизации (метод Квайна)
- •Упражнения
- •1.7. Некоторые применения алгебры логики
- •Упражнения
- •Вопросы для самоконтроля
- •2. Исчисление высказываний
- •2.1. Понятие формулы исчисления высказываний
- •Упражнения
- •2.2. Аксиомы и простейшие правила вывода
- •Система аксиом исчисления высказываний
- •Тогда правило подстановка схематически запишется так
- •2.3. Определение доказуемой формулы
- •Рассмотрим примеры получения доказуемых формул.
- •2.4. Производные правила вывода
- •Упражнения
- •2.5. Определение формулы, выводимой из совокупности формул н
- •2.6. Понятие вывода
- •2.7. Основные правила выводимости
- •2.8. Доказательство некоторых законов логики
- •2.9. Проблемы аксиоматического исчисления высказываний
- •Вопросы для самоконтроля
- •3. Логика предикатов
- •3.1. Понятие предиката
- •3.2. Логические операции над предикатами
- •Упражнения
- •Кванторные операции
- •Упражнения
- •Определение формулы логики предикатов
- •3.5. Равносильные формулы логики предикатов
- •Упражнения
- •3.6. Предварённая нормальная форма
- •Выполнимость и общезначимость формул
- •Упражнения
- •Применение языка логики предикатов в математике и технике
- •Вопросы для самоконтроля
- •4. Основные положения теории алгоритмов
- •4.1. Интуитивное понятие алгоритма
- •4.2. Уточнение понятия алгоритма
- •4.3. Частично-рекурсивные и общерекурсивные функции
- •Упражнения
- •4.4. Машины Тьюринга
- •Упражнения
- •4.5. Понятие о нормальных алгоритмах Маркова
- •4.6. Алгоритмически неразрешимые проблемы
- •4.7. Сложность алгоритмов
- •Вопросы для самоконтроля
- •Ответы и решения
- •Раздел 1
- •Подраздел 1.3
- •Раздел 2
- •Раздел 3.
- •Раздел 4
- •Библиографический список
- •Список сокращений
- •Содержание
1.4.1. Правила склеивания для элементарных конъюнкций и дизъюнкций
Сначала введем
некоторые понятия. Логическое
произведение
сумма
любого числа высказываний называется
элементарным, если сомножители
слагаемые
в нем являются либо одиночными
высказываниями, либо их отрицаниями.
Например:
–
элементарное произведение,
– неэлементарное
произведение.
Количество сомножителей в элементарном произведении называется его рангом.
Два элементарных
произведения одинакового ранга
называются
соседними, если они являются формулами
одних и тех же высказываний и отличаются
знаком отрицания только одного
высказывания.
Теперь
сформулируем само правило склеивания
для элементарных конъюнкций: логическую
сумму двух соседних произведений
некоторого ранга
можно
заменить одним элементарным произведением
ранга
,
являющимся общей частью исходных
слагаемых.
Пример:
Аналогично для дизъюнкции определяются ранг и соседство. Правило склеивания для элементарных дизъюнкций формулируется следующим образом: логическое произведение двух соседних дизъюнкций ранга можно заменить одной дизъюнкцией ранга , являющейся общей частью исходных сомножителей.
Пример:
1.4.2. Правила поглощения для элементарных конъюнкций и
Дизъюнкций
Логическую сумму двух элементарных конъюнкций разных рангов, из которых одна является частью другой, можно заменить слагаемым, имеющим меньший ранг.
Пример:
Правило поглощения для элементарных дизъюнкций формулируется следующим образом: логическое произведение двух элементарных дизъюнкций разных рангов, одна из которых является частью другой, можно заменить сомножителем меньшего ранга.
Пример:
.
Правила склеивания и поглощения, как нетрудно заметить, являются следствием распределительных законов.
1.4.3. Правило развёртывания
Оно также является следствием распределительных законов и регламентирует действие, обратное склеиванию. Оно используется, когда нужно составить некоторое логическое выражение в виде совокупности конституент (от англ. constituent – составная часть чего-либо) единицы (КЕ) или конституент нуля (КН).
Конституента единицы (иногда употребляют минтерм) – это конъюнкция всех высказываний, которые входят в неё в прямом или инверсном виде лишь по одному разу и обращающаяся в ноль при одном наборе логических значений высказываний и в единицу при всех остальных наборах.
Конституента нуля (иногда употребляют макстерм) – это дизъюнкция всех высказываний, которые входят в неё в прямом или инверсном виде лишь по одному разу и обращающаяся в единицу при одном наборе логических значений высказываний и в ноль при всех остальных наборах.
Количество KE
и КН заданного числа высказываний
совпадает, как это следует из определения,
с числом различных наборов высказываний
и равно
.
Конституенты принято обозначать
какими-либо символами, например:
и
.
Единица или ноль в верхнем индексе
означает вид конституенты, т.е. КЕ это
или КН, нижний индекс означает ее номер,
совпадающий с номером набора.
Приведем примеры всех КЕ и КН для двух высказываний.
Таблица 7.