Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры инж изыскания.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
376.09 Кб
Скачать

Виды геодезических знаков

Правильный выбор конструкции и мест размещения геодезических знаковсущественно влияет на качество результатов наблюдений. Геодезические знакиделят на:

  • опорные, являются исходной основой, относительно которой определяют положение марок; их размещают и закрепляют с условием стабильности и длительной сохранности;

  • вспомогательные, через которые передают координаты и высоты от опорных знаков к деформационным;

  • деформационные, их закрепляют на исследуемом сооружении, перемещаясь с ним, они показывают изменение его положения в пространстве.

Для плановых опорных знаков широко используют трубчатые конструкции; стальная труба диаметром 100-300 мм, которую заглубляют и бетонируют в грунт не менее 1 м ниже верхней границы твердых коренных пород. К верхнему концу (фланцу) крепят головку знака. Вокруг основной трубы помещают защитную трубу, пространство между ними заполняют битумом, а в верхней части — легким теплоизоляционным материалом, знак закрывают крышкой.

Для опорных высотных реперов также применяют трубчатые конструкции, для учета температурных деформаций используют две трубы: стальную и дюралюминиевую, такой репер называют биметаллическим.

При определении деформаций промышленных и гражданских зданий применяют свайные знаки и реперы с поперечным сечением 180-250 мм.

Деформационные знаки для определения горизонтальных смещений — это в основном визирные цели, закрепленные на сооружениях или на кронштейнах, в полу сооружения — металлические пластины с нанесенным на них перекрестием. Большинство осадбчных реперов имеют сферические головки, на которые устанавливают нивелирную рейку. Возможно закрепление на сооружении постоянных шкал, при этом не требуется рейка.

Опорные знаки размещают ближе к сооружению, но вне зоны возможных деформаций. Число опорных знаков, не менее трех, должно обеспечивать взаимный контроль за их устойчивостью.

Деформационные знаки для определения горизонтальных смещений промышленных и гражданских зданий располагают по периметру не реже, чем через 15-20 м, по углам и по обе стороны осадочных швов. На плотинах гидроузлов знаки устанавливают в галереях и по верху плотины не менее двух марок на секцию. На причальных и подпорных стенках реперы размещает через 30 м. Высотные знаки (марки) на зданиях устанавливают по углам, по периметру через 10-15 м и по обе стороны деформационных швов, колоннах, в примыкании продольных и поперечных стен, на причальных ц, подпорных стенах — через 15-20 м. На дымовых трубах, доменных печах, башнях и т. п. устанавливают несколько ярусов деформационных знаков.

10 Инженерно-геологические изыскания

Инженерная геология и инженерно-геологические изыскания - это исследования, в ходе которых проводится изучение инженерно-геологических условий района (объекта, площадки, участка, трассы) предполагаемого места строительства, включая рельеф, сейсмотектонические, геоморфологические и гидрогеологические процессы, геологическое строение и составление прогноза возможных измененийинженерно-геологических условий при взаимодействии данных объектов с геологической средой. Инженерно-геологические изысканиянеобходимы также для получения материалов, для обоснования проектной подготовки строительства.

В состав инженерно-геологических изысканий входит:

  • сбор, изучение и обобщение архивных материалов изысканий Мосгоргеотреста, Мособлгеотреста (для объектов расположенных в Москве и Московской области) и других организаций на изучаемой площадке;

  • исследование геологического строения площадки;

  • выявление гидрогеологического режима, химического состава подземных вод и фильтрационных характеристик грунтов;

  • исследование закономерностей и факторов развития опасных геологических и инженерно-геологических процессов в пространстве и во времени;

  • полевые исследования физико-механических свойств грунтов;

  • лабораторные исследования физико-механических свойств грунтов;

  • геофизические исследования;

  • обследование грунтов оснований существующих зданий и сооружений;

  • составление прогноза изменений инженерно-геологических условий;

  • камеральная обработка материалов и составление технического отчета (заключения) по результатам геологических, гидрогеологических изысканий и других исследований.

К числу задач, решаемых с использованием материалов инженерно-геологических изысканий, относятся:

 

  • обоснование технической возможности и экономической целесообразности строительства проектируемого объекта в   данном районе;  

  • сравнение возможных вариантов расположения проектируемого объекта и выбор из них оптимального;  

  • обоснование компоновки зданий и сооружений проектируемого объекта по выбранному варианту; 

  • аргументация расчетных схем оснований и среды зданий и сооружений; 

  • осуществление авторского надзора за производством строительных работ.

Содержание технического отчета инженерно-геологических изысканий :

 

Текстовая часть

  1. Физико-географические условия района работ.

  2. Геоморфологическая приуроченность и геолого-литологическое строение.

  3. Гидрогеологические и инженерно-геологические условия участка.

  4. Выводы и рекомендации с таблицами рекомендуемых значений прочностных и деформационных характеристик грунтов.

Табличные приложения

  1. Ведомость результатов анализа физико-механических свойств грунтов.

  2. Результаты измерения коррозионной агрессивности грунтов.

  3. Химический анализ воды.

Графические приложения

  1. Топографическая съемка с расположением скважин и линий инженерно-геологических разрезов.

  2. Инженерно-геологические разрезы.

  3. Инженерно-геологические колонки скважин.

  4. Копия Лицензии на инженерно-гелогические изыскания;

  5. Копия разрешения на изыскательские работы;

  6. Копия технического задания с печатью проектной организации.

11. Инженерно-геологические изыскания. Методы бурения,шурфования,зондирования

Задачей буровых работ при инженерно-геологических исследованиях является, как правило, изучение геолого-литологического строения вскрытого разреза и свойств пород.

В настоящее время известны следующие способы разрушения горных пород: механический   (разрушение инструментами, машинами гидравлическим аппаратами); физический (огневой и взрывной); химический   (растворение,  выщелачивание, газификация). Различают два основных вида механического способа бурения: ударное и вращательное бурение.

При ударном бурении порода разрушается под действием ударов буровыми наконечниками, называемыми долотами. При вращательном бурении порода срезается или раздавливается и истирается в забое специальными режущими и дробящими долотам» или резцами коронок, буровой дробью или алмазами.

Различают два вида ударного бурения: канатное и штанговое. В первом случае буровые наконечники опускаются в скважину и приводятся в действие канатом (тросом), во втором случае металлическими стержнями-штангами. Штанговое ударное бурение может производиться с промывкой забоя скважины и без промывки. Разрушение породы при ударном бурении осуществляется на полное сечение скважины — сплошным забоем.

Вращательное бурение в свою очередь разделяется на собственно вращательное (роторное), обычно применяемое в тех случаях, когда скважину можно проходить сплошным забоем, и колонковое, при котором разрушение породы на забое ведется по кольцу при помощи пустотелого цилиндра-коронки. Внутри коронки остается неразрушенный столбик — керн или колонка породы, отсюда этот вид бурения и получил название колонкового. Для разрушения горных пород при вращательном бурении применяют алмазы, твердые сплавы и буровую стальную или чугунную дробь.

Вращение бурового наконечника может быть осуществлено при помощи двигателя, находящегося на поверхности, через бурильные трубы—штанги, или при помощи двигателя, находящегося на забое непосредственно за буровым наконечником, К забою двигатель опускается на трубах, а в последнее время иногда на канате.

К забойным двигателям относятся турбобур, электробур, гидровибратор и др.

В настоящее время для колонкового бурения разрабатываются малогабаритные забойные двигатели и забойные механизмы, (типа гидроперфораторов), обеспечивающие одновременное воздействие на породу буровым наконечником ударным и вращательным способами (комбинированное бурение).

По виду применяемой энергии различают бурение ручное и механическое.

Как правило, вращательное, в том числе и колонковое бурение, ведется с промывкой (или с продувкой) забоя так, чтобы продукты разрушения породы выносились на поверхность восходящим потоком жидкости (или газа). При канатном и штанговом ударном бурении без промывки очистка забоя от породы, разрушенной долотом, производится специальными инструментами — желонками.С целью повышения эффективности разрушения породы ведутся работы по созданию механизмов которые обеспечивали бы комбинированное воздействие на породу— удар и вращение. К таким механизмам, в частности, относятся гидроперфораторы, гидровибраторы.При бурении г. твердых и очень твердых породах ударно-врашательный способ  наиболее  перспективен  из  всех  механических способов.Дли проходки неглубоких скважин (до 25 м) в нетвердых породах применяется вибробурение, при котором погружение бурового инструмента происходит за счет создаваемых механическим вибратором вибрации и веса самого инструмента.К физическим способам проходки скважин в первую очередь. относится термический, или как его называют огневой способ, применяемый главным образом для разрушении пород, имеющих кремнистое основание. Действие этого способа основано на том, что при воздействии на породу пламенем с высокой температурой (до 2400°) и скоростью до 1800 м/сек зерна кварца преобразуются, значительно увеличиваясь в объеме, за счет чего происходит скалывание частиц породы; частицы выносятся из скважины па поверхность водяным паром. Хотя производительность этого способа и превышает производительность механических видом бурения, однако из-за относительной сложности осуществления этот способ пока не вышел из стадии лабораторных  исследовании.

В будущем возможно использование в первую очередь для неглубоких скважин электрогидравлического эффекта, предложенного Л. А. Юткиным. Сущность этого способа заключается в том, что в зоне прохождения электрической искры между полюсами в воде образуются большие давления, в результате чего происходят взрывы, и порода вблизи искры разрушается.

При бурении нефтяных скважин весьма успешно внедряется о полошив способ разрушения породы на забое при помощи привитых веществ, подаваемых в специальных капсулах промывочной жидкостью на забой.

В ряде стран в последние годы ведутся исследования по разрушению горных пород в скважинах при помощи ультразвуковых  колебаний, передаваемых долоту через бурильные трубы, или путем передачи ультразвуковых колебаний абразивному порошку, подсыпаемому под металлический инструмент. Абразивным порошком чаще служит карбид бора, смоченный жидкостью.

 При бурении инженерно-геологических скважин применяются следующие основные способы: колонковый, шнековый, вибрационный и ударно-канатный кольцевым забоем. Во всех этих способах процесс бурения, как правило, механизирован.Применение того или иного способа бурения определяется следующими основными условиями:

  • Колонковое бурение используют преимущественно в скальных и полускальных породах, также в плотных связных грунтах при условии использования глинистой промывки; глубина бурения до 100 метров;

  • Шнековый способ, также весьма производительный, следует применять в случаях вскрытия водоносных слоев, забоя на ту или иную глубину без подробного изучения проходимых пород, глубина бурения до 50 метров.

  • Вибрационный способ, являясь наиболее производительным, применяется для проходки связных и рыхлых пород, не содержащих значительной примеси крупнообломочного материала; глубина бурения до 15 –20 метров.

  • Ударно-канатное бурение кольцевым забоем рекомендуется применять для разведки различных рыхлых, связных и полускальных пород; глубина бурения до 50 метров;

Ударно-канатное, вибрационное и шнековое бурение при необходимости изучения механических и прочностных свойств пород в естественном состоянии следует сопровождать отбором монолитов (образцов с ненарушенной структурой) пород исключительно при помощи грунтоносов различного типа.Так в глинистых грунтах твердой и полутвердой консистенции следует применять обуривающие грунтоносы, со скоростью их вращения, при отборе монолита, не более 60 об/мин и давлением на забой 150-300 кгс; в грунтах тугопластичной, мягкопластичной и текучепластичной консистенции – вдавливаемые грунтоносы.

Величина заглубления грунтоноса не должна быть меньше полутора его диаметра и не больше 0,4 метров.ачальные диаметры бурения определяются количеством перемен диаметра по глубине скважины, связанных, как правило, с неустойчивостью стенок скважины и необходимостью их закрепления обсадными трубами, а также заданной величиной конечного диаметра. Так, например, при необходимости отбора монолитов для испытания в компрессионном приборе, диаметр обоймы (кольца) которого составляет 90 мм, диаметр скважины должен быть не менее 115 мм, если отбора не требуется, то 75 мм.

Шурфование — производство разведок при помощи сети шурфов. Благоприятным условием для Ш являются неглубокие наносы и пологое падение пластов. Основное правило: разведочные шурфы всегда закладываются в висячем боку интересующего . пласта или жилы. Каждый последующий шурф в верхней своей части должен пересечь ту же самую плоскость наслоения, на которой остановился предыдущий. При наклонных пластах линию или пинии шурфов располагают поодаль и параллельно выходу пласта пол. ископ. При очень пологопадающих и горизонтальных пластах весь обследуемый участок покрывается сеткой шурфов, более редкой — при предварительной разведке и более густой — при детальной. Для этого провешивается ряд линий на расстоянии 100 — 50—20 м. одна от другой, и другой ряд линий на таком же расстоянии перпендикулярно к первому ряду. Шурфы (или скв.) задаются в пунктах пересечения провешенных линий. Иногда от забоя шурфов проводятся разведочные штреки или квершлаги. При шурфовании значительный процент шурфов (или скв.) оказывается заложенным за пределами рудного тела, если не был применен   предварительно   один из методов геофизических изысканий. В последнем случае, когда рудное тело оконтурено этими методами, число пустых шурфов (или скв.) доводится до минимума, что, конечно, значительно понижает расходы на Ш.

В настоящее время при инженерных изысканиях широкое применение получили методы статического и динамического зондирования. Это очень простые методы исследований преимущественно песчаных и глинистых пород, дающие широкую информацию об их плотности, прочности, деформационных свойствах и однородности. Кроме того, с помощью этих методов можно устанавливать изменение геологического разреза по глубине, выявлять глубину залегания и мощность слабых слоев и зон плотных, прочных и коренных пород, а также изменение степени уплотнения, и упрочнения искусственно отсыпанных или намытых пород во времени. Методы зондирования позволяют получать необходимые данные для проектирования и оценки условий строительства свайных фундаментов, шпунтовых ограждений и других видов строительных работ.

Опыты состоят в задавливании или забивании в горные породы зонда с коническим наконечником (редко грунтоноса-пробоотборника). При статическом зондировании зонд задавливается в породы, при динамическом — забивается. По тем сопротивлениям, которые оказывают горные породы проникновению в них зонда, судят об их плотности, прочности и других свойствах. Естественно, что такие исследования горных пород не являются достаточно точными, они дают предварительные, главным образом приближенные представления об их свойствах. При сочетании методов зондирования с другими видами геологических работ, результативность их, т.е. точность и достоверность, значительно повышаются.

Статическое и динамическое зондирование — это полевые экспресс - методы, для интерпретации результатов которых на предварительных стадиях изысканий их надо обязательно сочетать с разведочными работами — геофизическими и горно-буровыми, а на детальных — использовать в качестве дополнительных с целью повышения детальности изысканий в целом и решения специальных вопросов (например, при проектировании свайных фундаментов и др.).

ГОСТ 20069—74 и 19912—74 и «Указания по зондированию горных пород для строительства» (СН 448-72) рекомендуют при инженерных изысканиях для конкретных зданий и сооружений зондирование производить в пределах их контуров или не более чем в 5 м от них. Для получения сопоставимых данных часть точек зондирования рекомендуется располагать на расстояниях не более 5 м от разведочных выработок, из которых производят отбор монолитов горных пород для лабораторных исследований и выполняют другие полевые исследования. Практика показывает, что данные зондирования необходимо рассматривать совместно с данными, получаемыми при бурении скважин и проходке горных выработок. Этого требуют ГОСТ 20069—74 и 19912—74. Глубину зондирования определяют исходя из необходимости исследования определенной толщи горных пород как оснований зданий и сооружений. Предельная глубина зондирования не должна превышать 20-и. Область применения статического и динамического зондирования в зависимости от вида и физического состояния горных пород регламентируется данными, приведенными в табл.1.

Таблица 1.

Область применения статического и динамического зондирования по СН 448-72

Вид и физическое состояние горных пород

Способ зондирования

статический

динамический

Песчаные:

крупно-, средне-, мелко- и тонкозернистые влажные и и маловлажные;

крупно-, средне-, мелкозернистые водоносные;

Допускаются

тонкозернистые пылеватые водоносные

Допускается

Не допускается*

Глинистые (супеси, суглинки и глины):

твердой, полутвердой и тугопластичной консистенции;

Допускаются

мягкопластичной, текучепластичной и текучей консистенции

Допускается

Не допускается*

Песчаные и глинистые с содержанием крупнообломочного материала

Не допускаются

при более 25%

при более 40%

Песчаные водоносные

При определении динамической устойчивости

Не допускается*

Допускается

Все виды горных пород в мерзлом состоянии

Не допускаются

Скальные и полускальные

Крупнообломочные

12. геологические разведочные горные выработки

13 физико-химические процессы и явления

Выветривание – это процесс изменения и разрушения минералов и горных пород на земной поверхности под воздействием физических, химических и органических факторов.

 

14.КАТЕГОРИИ СЛОЖНОСТИ ИНЖЕНЕРНО-ГЕ

ОЛОГИЧЕСКИХ УСЛОВИЙ

Факторы

I (простая)

II (средней сложности)

III (сложная)

Геоморфологические условия

Площадка (участок) в пределах одного геоморфологического элемента. Поверхность горизонтальная, нерасчлененная

Площадка (участок) в пределах нескольких геоморфологических элементов одного генезиса. Поверхность наклонная, слабо расчлененная

Площадка (участок) в пределах нескольких геоморфологических элементов разнога генезиса. Поверхность сильно расчлененная

Геологические в сфере взаимодействия зданий и сооружений с геологической средой

Не более двух различных по литологии слоев, залегающих горизонтально или слабо наклонно (уклон не более 0,1). Мощность выдержана по простиранию. Незначительная степень неоднородности слоев по показателям свойств грунтов, закономерно изменяющихся в плане и по глубине. Скальные грунты залегают с поверхности или перекрыты маломощным слоем нескальных грунтов

Не более четырех различных по литологии слоев, залегающих наклонно или с выклиниванием. Мощность изменяется закономерно. Существенное изменение характеристик свойств грунтов в плане или по глубине. Скальные грунты имеют неровную кровлю и перекрыты нескальными грунтами

Более четырех различных по литологии слоев. Мощность резко изменяется. Линзовидное залегание слоев. Значительная степень неоднородности по показателям свойств грунтов, изменяющихся в плане или по глубине. Скальные грунты имеют сильно расчлененную кровлю и перекрыты нескальными грунтами. Имеются разломы разного порядка

Гидрогеологические в сфере взаимодействия зданий и сооружений с геологической средой

Подземные воды отсутствуют или имеется один выдержанный горизонт подземных вод с однородным химическим составом

Два и более выдержанных горизонтов подземных вод, местами с неоднородным химическим составом или обладающих напором и содержащих загрязнение

Горизонты подземных вод не выдержаны по простиранию и мощности, с неоднородным химическим составом или разнообразным загрязнением. Местами сложное чередование водоносных и водоупорных пород. Напоры подземных вод и их гидравлическая связь изменяются по простиранию

Геологические и инженерно-геологические процессы, отрицательно влияющие на условия строительства и эксплуатации зданий и сооружений

Отсутствуют

Имеют ограниченное распространение и (или) не оказывают существенного влияния на выбор проектных решений, строительство и эксплуатацию объектов

Имеют широкое распространение и (или) оказывают решающее влияние на выбор проектных решений, строительство и эксплуатацию объектов

Специфические грунты в сфере взаимодействия зданий и сооружений с геологической средой

Отсутствуют

Имеют ограниченное распространение и (или) не оказывают существенного влияния на выбор проектных решений, строительство и эксплуатацию объектов

Имеют широкое распространение и (или) оказывают решающее влияние на выбор проектных решений, строительство и эксплуатацию объектов

Техногенные воздействия и изменения освоенных территорий

Незначительные и могут не учитываться при инженерно-геологических изысканиях и проектировании

Не оказывают существенного влияния на выбор проектных решений и проведение инженерно-геологических изысканий

Оказывают существенное влияние на выбор проектных решений и осложняют производство инженерно-геологических изысканий в части увеличения их состава и объемов работ

Примечание - Категории сложности инженерно-геологических условии следует устанавливать по совокупности факторов, указанных в настоящем приложении. Если какой-либо отдельный фактор относится к более высокой категории сложности и является определяющим при принятии основных проектных решений, то категорию сложности инженерно-геологических условий следует устанавливать по этому фактору. В этом случае должны быть увеличены объемы или дополнительно предусмотрены только те виды работ, которые необходимы для обеспечения выяснения влияния на проектируемые здания и сооружения именно данного фактора.

15.Полевые методы испытания грунтов

Выбор методов полевых исследований грунтов производится  в зависимости от вида изучаемых грунтов и целей исследований с учетом стадии проектирования, уровня ответственности зданий и сооружений (ГОСТ 27751-88), степени изученности и сложности инженерно-геологических условий.

   Основные методы полевых исследований грунтов производимых нашими специалистами:

   - статическое зондирование;

   - динамическое зондирование;

   - испытание штампом;

   - прессиометрия.

Статическое зондирование

   Статическое зондирование является одним из наиболее эффективных методов испытания грунтов в условиях их естественного залегания. Метод статического зондирования основан на вдавливании испытательного зонда в грунт статической нагрузкой.Статическое зондирование в сочетании с другими видами инженерно-геологических исследований грунтов применяется при инженерно-геологических изысканиях для определения:

   - инженерно-геологических элементов (мощности, границы распространения грунтов различного состава и состояния);

   - однородности грунтов по площади и глубине;

   - глубины залегания кровли скальных и крупнообломочных грунтов;

   - приближенной количественной оценки характеристик грунтов (плотности, угла внутреннего трения, удельного сцепления, модуля деформации и т.д.);

   - сопротивления грунта под сваей и по ее боковой поверхности;

   - степени уплотнения и упрочнения техногенных (насыпных и намывных) грунтов;

   - выбора мест расположения опытных площадок для детального изучения физико-механических свойств грунтов.Основными документами, регламентирующими проведение испытаний статическим зондированием, являются ГОСТ 19912-2001 "Грунты. Методы полевых испытаний статическим и динамическим зондированием" и Европейский стандарт 1977 года. Статическое зондирование применяется для испытаний немерзлых и талых песчаных и глинистых грунтов, содержащих не более 25% частиц крупнее 10 мм.

   - Для испытаний наши специалисты используют комплект для статического зондирования «Пика-17».

Испытания штампом

   В полевых условиях исследование деформационных свойств грунтов производится поэтапным нагружением жестких штампов, установленных в породах, которые будут находится в пределах сферы взаимодействия с сооружением, и заключается в измерении осадок штампа от каждой ступени нагрузки, а также в изучении характера деформации во времени, Испытание пород штампами связано с монтажем тяжелого оборудования, специальной подготовкой грунтов к испытаниям, на изучение характера осадки требуется значительное время. Поэтому испытания пород штампами производится лишь на последних стадиях инженерно-геологических исследований под строительство, когда выбрано место "посадки", определены габариты сооружения, передаваемые на грунты нагрузки, тип и глубина заложения фундамента. Производство испытаний штампами и интерпретация результатов регламентируется ГОСТ 12374-77.

ПрессиометрияПрессиометрия – метод испытания грунтов в буровых выработках, осуществляемый путем приложения нагрузок к стенкам скважин. Испытание производится путем помещения в скважину специального устройства – прессиометрической камеры с последующим нагнетанием нагрузки гидравлическим или пневматическим способом. Метод позволяет быстро выполненять большое количество замеров практически на любых глубинах и проводить испытания скальных разновидностей грунтов. При интерпретации результатов прессиометрических исследований необходимо производить оценку природной анизотропии грунтов. Большинство сооружений оказывает давление на грунтовый массив в вертикальном направлении, в то время как результаты прессиометрических испытаний характеризуют сопротивляемость тех или иных отложений сжатию в горизонтальной плоскости.

16.

Статистическую обработку опытных данных начинают с проверки на исключение возможных грубых ошибок. Исключить необходимо максимальное или минимальное значения Xi, для которых выполняется условие

где    среднее значение; v  статистический критерий, принимаемый в зависимости от числа определений; Sdis смещенная оценка среднего квадратичного отклонения:

n  число определений.

После этого определяют нормативное (среднее арифметическое) значение  , а также среднее квадратичное отклонение

Приведенная статистическая обработка применяется только при определении удельного веса грунтов, предела прочности на одноосное сжатие скальных грунтов и модуля деформации грунтов. Другие физические характеристики вычисляются как нормативные значения.

Прочностные характеристики грунтов  угол внутреннего трения и удельное сцепление с определяют исходя из зависимости Кулона  с использованием метода наименьших квадратов. Для обработки используются результаты всех определений, произведенных для рассматриваемого слоя грунта.

17. Гидрогеологические исследования выполняются в тех случаях, когда в сфере взаимодействия проектируемого объекта с геологической средой распространены или могут формироваться подземные воды. Возможно загрязнение или истощение водоносных горизонтов при эксплуатации объекта, прогнозируется процесс подтопления или подземные воды оказывают существенное влияние на изменение свойств грунтов, а также на интенсивность развития геологических и инженерно-геологических процессов (карст, суффозия, оползни, пучение и др.).

Опытно-фильтрационные работы выполняются с целью получения гидрогеологических параметров и характеристик для расчета дренажей, водопонизительных систем, противофильтрационных завес, водопритока в строительные котлованы, коллекторы, тоннели, а также для составления прогноза изменения гидрогеологических условий.

18.Гидрогеологические исследования.Подземные воды(инфильтрационные, конденсационные, седиментационные , ювенильные). Верховодка,грунтовые воды, артезианские воды, трещиновые и карстовые воды, воды многолетней мерзлоты, межмерзловые воды.

Гидрогеоло́гия (от др.-греч. ὕδωρ «водность» + геология) — наука, изучающая происхождение, условия залегания, состав и закономерности движений подземных вод. Также изучается взаимодействие подземных вод с горными породами, поверхностными водами и атмосферой.

В сферу этой науки входят такие вопросы, как динамика подземных вод, гидрогеохимия, поиск и разведка подземных вод, а также мелиоративная и региональная гидрогеология. Гидрогеология тесно связана с гидрологией и геологией, в том числе и с инженерной геологиейметеорологиейгеохимиейгеофизикой и другими наукамио Земле. Она опирается на данные математикифизикихимии и широко использует их методы исследования.

Данные гидрогеологии используются, в частности, для решения вопросов водоснабжениямелиорации и эксплуатации месторождений.

История гидрогеологии

Накопление знаний о подземных водах, начавшееся с древнейших времен, ускорилось с появлением городов и поливного земледелия. В частности, свою лепту внесло сооружение копаных колодцев, строившихся в 2—3 тыс. до н. э. в Египте, Средней Азии, Китае и Индии и достигавших глубин в несколько десятков метров. Примерно в этот же период появилось лечение минеральными водами.

Первые представления о свойствах и происхождении природных вод, условиях их накопления и круговороте воды на Земле были описаны в работах древнегреческих ученых Фалеса и Аристотеля, а также древнеримских Тита Лукреция Кара и Витрувия. Изучению подземных вод способствовало расширение работ, связанных с водоснабжением в Египте, Израиле, Греции и Римской империи. Возникло понятия о ненапорных, напорных и самоизливающихся водах. Последние получили в XII веке н. э. название артезианских — от названия провинции Артуа (древнее название — Артезия) во Франции.

В России первые научные представления о подземных водах как о природных растворах, их образовании путем инфильтрации атмосферных осадков и геологической деятельности подземных вод были высказаны М. В. Ломоносовым в сочинении «О слоях земных» (1763 г.). До середины XIX века учение о подземных водах развивалось как составная часть геологии, после чего обособилось в отдельную дисциплину.

Подземные воды

Подземными считаются все воды земной коры, находящиеся ниже поверхности Земли в горных породах в газообразном, жидком и твердом состояниях. Подземные воды составляют часть гидросферы — водной оболочки земного шара. Запасы пресной воды в недрах Земли составляют до 1/3 вод Мирового океана. В России известно порядка 3367 месторождений подземных вод, из них эксплуатируется менее 50 %. Иногда подземные воды вызывают оползни, заболачивание территорий, осадку грунта, они затрудняют ведение горных работ в шахтах, для уменьшения притока подземных вод проводят осушение месторождений и сооружают водоотливы.

 Инфильтрационные подземные воды образуются путем просачивания поверхностных вод в почву, в грунт.

Конденсационные подземные воды образуются в результате конденсации водяных паров в порах или трещинах пород

Седиментационные воды - подземные воды морского происхождения. Седиментационные воды различаются на сингенетические и эпигенетические

Ювенильные воды - подземные воды, образующиеся из кислорода и водорода, выделяющихся из магмы, и впервые вступающие в круговорот воды в природе.

Верховодка

Верховодка и грунтовые воды

Верховодка — подземные воды, залегающие вблизи поверхности земли и отличающиеся непостоянством распространения, временем существования идебита.

Верховодка, как правило, образуется на первом от поверхности земли водоупорном пласте или прослойках водоупорных отложений в водоносноной толще, имеет локальное распространение и сезонный характер существования. Верховодка существует в период достаточного увлажнения, а в засушливое время исчезает. В тех случаях, когда водоупорный пласт залегает вблизи поверхности или выходит на поверхность, развивается заболачивание. К верховодке также нередко относят почвенные воды, или воды почвенного слоя, представленные почти связанной водой, где капельно-жидкая вода присутствует только в период избыточного увлажнения.

Воды верховодки обычно пресные, слабоминерализованные, но часто бывают загрязнены органическими веществами и содержат повышенные количества железа и кремнекислоты. Как правило, верховодка не может служить хорошим источником водоснабжения. Однако при необходимости принимаются меры для искусственного сохранения этого типа вод: устраивают пруды, отводы из рек, обеспечивающие постоянным питанием эксплуатируемые колодцы, насаждения растительности или задерживающие снеготаяние.