
- •Предисловие
- •1.Предмет и задачи астрономии, классификация разделов астрономии.
- •1.1 Задачи астрономии
- •1.2 Разделы астрономии
- •1.3 История и основные этапы развития астрономии
- •1.4 Связь астрономии с другими науками, практическое значение астрономии
- •Литература к разделу
- •2. Основные сведения о Вселенной, звездном небе, солнечной системе, Земле
- •2.1 Строение Вселенной
- •2.2 Созвездия
- •2.3 Видимое движение небесных светил
- •2.4 Общие сведения о Земле
- •2.5 Доказательство шарообразности Земли, её вращения вокруг оси и годичного движения вокруг Солнца.
- •2.6 Фигура и размеры Земли
- •Литература к разделу
- •3. Основы сферической астрономии
- •3.1 Основные понятия сферической тригонометрии
- •3.1.1 Свойства сферического треугольника
- •3.1.2 Решение сферического треугольника
- •3.2 Небесная сфера, основные точки и круги.
- •3.3 Системы небесных координат
- •3.3.1 Горизонтальная система координат
- •3.3.2 Первая экваториальная система координат
- •3.3.3 Вторая экваториальная система координат
- •3.3.4 Эклиптическая система координат
- •3.3.5 Географическая система координат
- •3.4 Связь между системами координат
- •3.4.1 Теорема о высоте полюса
- •3.4.2 Связь между географическими долготами и часовыми углами
- •3.4.3 Параллактический треугольник
- •3.5 Суточное вращение небесной сферы
- •1.Незаходящие звёзды
- •2. Восходящие и заходящие звёзды
- •3. Невосходящие звёзды
- •3.6 Горизонтальные координаты светил в кульминациях
- •Для верхней кульминации
- •Для нижней кульминации
- •3.7 Движение Земли вокруг Солнца, изменение экваториальных координат Солнца в течение года.
- •3.8 Следствия годичного движения Земли вокруг Солнца, климатические пояса Земли.
- •3.9 Сумерки, белые ночи.
- •3.10 Время, системы измерения времени в астрономии.
- •3.10.1 Звездное время.
- •3.10.2 Солнечное время.
- •3.19 Связь среднего солнечного и звездного времени
- •3.10.3 Связь среднего солнечного и звездного времени.
- •3.10.4 Время на меридиане Гринвича
- •3.10.5 Время на разных меридианах
- •3.10.6 Поясное и декретное время
- •3.10.7 Эфемеридное время
- •3.10.8 Динамические шкалы времени
- •3.10.9 Атомное время
- •3.10.10 Всемирное координированное время.
- •3.10.11 Календарь
- •310.12 Юлианские дни
- •3.10.13 Линия перемены даты
- •3.11 Астрономические факторы
- •3.11.1 Рефракция
- •3.11.2 Параллакс
- •3.11.3 Аберрация
- •3.11.4 Прецессия и нутация
- •Литература к разделу
- •5. Астрономический календарь, постоянная часть/Под ред. В.К.Абалакина. Изд. 7-е, перераб.-л.: Наука, 1981.-704с.
- •Строение и масштаб солнечной системы, движение планет.
- •4.1 Видимое движение планет, конфигурации планет
- •4.2 Прохождение внутренних планет по диску Солнца.
- •4.3 Периоды обращения планет: синодический, звездный (сидеричский)
- •4.4 Законы Кеплера
- •Радиус-вектор планеты за равные промежутки времени описывает равные площади.
- •4.5 Элементы орбит.
- •4.6 Закон всемирного тяготения
- •4.6.1 Следствия закона всемирного тяготения
- •4.6.2 Движение тела под действием силы тяготения
- •4.6.2 Классификация орбит в задаче двух тел
- •4.7 Определение масс небесных тел
- •4.8 Движение исз
- •4.9 Орбита Луны и ее возмущения
- •4.10 Видимое движение и фазы Луны
- •4.11 Периоды обращения Луны
- •4.12 Вращение и либрации Луны
- •4.13 Затмения Луны и Солнца
- •Литература к разделу
- •5. Астрономический календарь, постоянная часть/Под ред. В.К.Абалакина. Изд. 7-е, перераб.-л.: Наука, 1981.-704с
- •5. Космонавтика
- •5.1 История
- •5.2 Значение освоения космоса
- •5.3 Сегодняшнее состояние космических программ и перспективы их развития
- •5.4 Ракеты-носители
- •5 .5 Вклад Кондратюка
- •Литература к разделу
- •Приложения Приложение 1 Приложении 1.1 Основные этапы освоения космоса
- •Приложение 1.2: Космические агентства
- •Приложение 1.3: Важные космические программы и полёты ка разных стран
- •1.3.1 Искусственные спутники Земли (исз)
- •1.3.2. Космические телескопы
- •1.3.3. Автоматические межпланетные станции
- •1.3.4. Лунные станции
- •1.3.5. Пилотируемые полёты
- •1.3.6. Орбитальные станции
- •1.3.7. Частные космические корабли
- •Приложение - 2
- •Iau Резолюция по планетам Резолюция 5a
3. Основы сферической астрономии
3.1 Основные понятия сферической тригонометрии
На основании первого впечатления, в древности, люди представляли, что все светила расположены на вращающейся прозрачной сфере. Для установления – соотношения между дугами, соединяющих светила, углами, образующихся при пересечении дуг, потребовалось создать математический аппарат. Это послужило толчком для создания аппарата сферической тригонометрии.
Основные положения сферической тригонометрии. При всяком сечение сферы плоскостью Мы получаем окружность – круг. Если плоскость проходит через центр, то получается большой круг (БК) (рис.3.1).
Дуга БК является кратчайшим расстоянием на сфере между двумя точками (на плоскости прямая). В сферической тригонометрии рассматриваются только соотношения между дугами БК.
Прямая АА1, проходящая
через центр плоскости БК, называется -
геометрической осью БК, т
очки
А и А1 – сферические центы БК – полюса.
Сам БК по отношению к полюсам называют
полярой или
экватором.
Величина дуг от точек АА1 до экватора
(сферическое расстояние) равно 90.
АКСИОМА через две точки на сфере, не лежащие на одном диаметре, можно провести большой круг и при том только один.
Дуги больших кругов при пересечение образуют углы, которые называются сферическими.
Рассмотрим сферический угол FAE где FА и EA – стороны. FА=EA = 90 градусов; FE – дуга поляры ( Экватора).
Сферический угол измеряется углом между касательными в точке А, т.е. угол NAM = сф. углу FAE. Из построения угол NAM = углу FOE =дуге FE. Т.е мерой сферического угла является дуга поляры, кроме того мерой сферического угла является и соответствующий ему двугранный угол. Кроме того, ( без доказательства ):
1. Вертикальный сферический угол равен 90;
2. Сумма смежных сферических углов ровна 180;
Для решения многих астрономических задач, таких, в частности, как переход от одной системы астрономических координат к другой, определение времени и азимута восхода и захода светил и т.п. рассматривается сферический треугольник и применяются его основные формулы. Сферический треугольник- фигура на сфере, образованная дугами трех больших кругов (рис. 3.1).
В сферической тригонометрии рассматриваются только треугольники со сторонами меньше 180 (эйлеровы треугольники). Углы в сферическом треугольнике, обозначают заглавными буквами, латинским алфавита ( А, В, С), а противолежащие им стороны соответствующими малыми буквами (а, b, с).
По углам треугольники могут быть: косоугольные, прямоугольные.
По сторонам: разносторонние, равносторонние, равнобедренные, прямосторонние.
Если в сферическом треугольнике один угол равен 90, треугольник называется прямоугольным. Сторона, лежащая против прямого угла гипотенуза, две другие катеты. Если треугольнике все углы равны 90, то такой треугольник называется трижды прямоугольным. В этом случае стороны одновременно и гипотенузы, и катеты.
Если в сферическом треугольнике одна сторона равна 90, треугольник называется прямосторонним. Сферические треугольники могут быть трижды прямосторонними.
Углы и стороны сферического треугольника измеряются в угловой мере!
На рис. 3.2 изображен косоугольный сферический треугольник ∆АВС. Углы треугольника: сф.ВАС=А; сф.АВС=В; сф.АСВ=С. Стороны сферического треугольника (мера угловая): дуга ВС=а; дуга АС=в; дуга АВ=с.
Рис. 3.2