
- •Предисловие
- •1.Предмет и задачи астрономии, классификация разделов астрономии.
- •1.1 Задачи астрономии
- •1.2 Разделы астрономии
- •1.3 История и основные этапы развития астрономии
- •1.4 Связь астрономии с другими науками, практическое значение астрономии
- •Литература к разделу
- •2. Основные сведения о Вселенной, звездном небе, солнечной системе, Земле
- •2.1 Строение Вселенной
- •2.2 Созвездия
- •2.3 Видимое движение небесных светил
- •2.4 Общие сведения о Земле
- •2.5 Доказательство шарообразности Земли, её вращения вокруг оси и годичного движения вокруг Солнца.
- •2.6 Фигура и размеры Земли
- •Литература к разделу
- •3. Основы сферической астрономии
- •3.1 Основные понятия сферической тригонометрии
- •3.1.1 Свойства сферического треугольника
- •3.1.2 Решение сферического треугольника
- •3.2 Небесная сфера, основные точки и круги.
- •3.3 Системы небесных координат
- •3.3.1 Горизонтальная система координат
- •3.3.2 Первая экваториальная система координат
- •3.3.3 Вторая экваториальная система координат
- •3.3.4 Эклиптическая система координат
- •3.3.5 Географическая система координат
- •3.4 Связь между системами координат
- •3.4.1 Теорема о высоте полюса
- •3.4.2 Связь между географическими долготами и часовыми углами
- •3.4.3 Параллактический треугольник
- •3.5 Суточное вращение небесной сферы
- •1.Незаходящие звёзды
- •2. Восходящие и заходящие звёзды
- •3. Невосходящие звёзды
- •3.6 Горизонтальные координаты светил в кульминациях
- •Для верхней кульминации
- •Для нижней кульминации
- •3.7 Движение Земли вокруг Солнца, изменение экваториальных координат Солнца в течение года.
- •3.8 Следствия годичного движения Земли вокруг Солнца, климатические пояса Земли.
- •3.9 Сумерки, белые ночи.
- •3.10 Время, системы измерения времени в астрономии.
- •3.10.1 Звездное время.
- •3.10.2 Солнечное время.
- •3.19 Связь среднего солнечного и звездного времени
- •3.10.3 Связь среднего солнечного и звездного времени.
- •3.10.4 Время на меридиане Гринвича
- •3.10.5 Время на разных меридианах
- •3.10.6 Поясное и декретное время
- •3.10.7 Эфемеридное время
- •3.10.8 Динамические шкалы времени
- •3.10.9 Атомное время
- •3.10.10 Всемирное координированное время.
- •3.10.11 Календарь
- •310.12 Юлианские дни
- •3.10.13 Линия перемены даты
- •3.11 Астрономические факторы
- •3.11.1 Рефракция
- •3.11.2 Параллакс
- •3.11.3 Аберрация
- •3.11.4 Прецессия и нутация
- •Литература к разделу
- •5. Астрономический календарь, постоянная часть/Под ред. В.К.Абалакина. Изд. 7-е, перераб.-л.: Наука, 1981.-704с.
- •Строение и масштаб солнечной системы, движение планет.
- •4.1 Видимое движение планет, конфигурации планет
- •4.2 Прохождение внутренних планет по диску Солнца.
- •4.3 Периоды обращения планет: синодический, звездный (сидеричский)
- •4.4 Законы Кеплера
- •Радиус-вектор планеты за равные промежутки времени описывает равные площади.
- •4.5 Элементы орбит.
- •4.6 Закон всемирного тяготения
- •4.6.1 Следствия закона всемирного тяготения
- •4.6.2 Движение тела под действием силы тяготения
- •4.6.2 Классификация орбит в задаче двух тел
- •4.7 Определение масс небесных тел
- •4.8 Движение исз
- •4.9 Орбита Луны и ее возмущения
- •4.10 Видимое движение и фазы Луны
- •4.11 Периоды обращения Луны
- •4.12 Вращение и либрации Луны
- •4.13 Затмения Луны и Солнца
- •Литература к разделу
- •5. Астрономический календарь, постоянная часть/Под ред. В.К.Абалакина. Изд. 7-е, перераб.-л.: Наука, 1981.-704с
- •5. Космонавтика
- •5.1 История
- •5.2 Значение освоения космоса
- •5.3 Сегодняшнее состояние космических программ и перспективы их развития
- •5.4 Ракеты-носители
- •5 .5 Вклад Кондратюка
- •Литература к разделу
- •Приложения Приложение 1 Приложении 1.1 Основные этапы освоения космоса
- •Приложение 1.2: Космические агентства
- •Приложение 1.3: Важные космические программы и полёты ка разных стран
- •1.3.1 Искусственные спутники Земли (исз)
- •1.3.2. Космические телескопы
- •1.3.3. Автоматические межпланетные станции
- •1.3.4. Лунные станции
- •1.3.5. Пилотируемые полёты
- •1.3.6. Орбитальные станции
- •1.3.7. Частные космические корабли
- •Приложение - 2
- •Iau Резолюция по планетам Резолюция 5a
4.6.2 Движение тела под действием силы тяготения
Если рассматривать движение планет или других тел (астероидов, комет) вокруг Солнца, то в большинстве случаев влиянием других тел («в первом приближении») можно пренебречь. В таком случае мы имеем дело с задачей двух тел. Математически строго эта задача решается путем интегрирования дифференциальных уравнений движения, получаемых из основного уравнения динамики материальной точки (4.14), в котором сила F есть сила тяготения. Это решение подробно рассматривается в курсах небесной механики или космической геодезии. Мы же получим основные выводы более простым путём.
Будем считать, что массы обоих тел сосредоточены в их центрах и следовательно их поле тяготения будет центральным или сферическим.
Пусть меньшее тело с масса m двигаясь в поле тяготения притягивающего тела с массой M имело в начальный момент скорость V0 на расстоянии от r0 от тела М (V0 и r0 начальные условия).
В дальнейшем используем закон сохранения энергии, который гласит, что
для изолированной физической системы энергия сохраняется с течением времени.
Кинетическая энергия тела m равна
Ek=mV2/2, (4.21)
потенциальная энергия в центральном поле тяготения выражается формулой
Ep= fMm/r. (4.22)
Закон сохранения полной механической энергии для тела массой m, двигающегося в поле тяготения другого тела массой М запишется в следующем виде:
.
(4.23)
В формуле (4.23) в левой части равенства стоит сумма кинетической и потенциальной энергий в начальный момент, а в правой в любой другой момент времени. После сокращения на m и преобразований, мы получим интеграл энергии :
,
(4.24)
Если заменить fM=K , то К гравитационный параметр, зависящий от массы притягивающего тела, который для Солнца равен К=1,32721011 км3/сек2, то (4.25) можно записать
.
(4.25)
4.6.2 Классификация орбит в задаче двух тел
Введём постоянную
=const
(постоянная
для данной орбиты), тогда выражение
(4.25) можно записать как
.
(4.26)
В зависимости от значения, которое принимает h получим следующую орбиту:
а) круговая орбита
,
;
(4.26а)
б) эллиптическая орбита
,
;
в) параболическая орбита
h=0,
;
г) гиперболическая орбита
h>0,
.
П
Рис.
4.8 Типы
орбит
рис.4.8
приведён пример возможных траекторий
движения тела m
относительно центрального,
находящегося в точке С,
если начальная скорость направлена
вдоль mb
перпендикулярно
mC.
Если начальная скорость V0
= VC
и будет направлена перпендикулярно к
линии mC,
то точка m
будет двигаться по кругу радиуса mС.
При V0>VП
тело движется по гиперболе, при V0=VП
по параболе и при V0<VП
по эллипсу. При этом может быть два типа
эллиптического движения, для которых
точка С
ближний и дальний фокус от точки m.
При дальнем фокусе орбита может быть
получается незамкнутая, т.е тело m
может упасть на М.