
- •Предисловие
- •1.Предмет и задачи астрономии, классификация разделов астрономии.
- •1.1 Задачи астрономии
- •1.2 Разделы астрономии
- •1.3 История и основные этапы развития астрономии
- •1.4 Связь астрономии с другими науками, практическое значение астрономии
- •Литература к разделу
- •2. Основные сведения о Вселенной, звездном небе, солнечной системе, Земле
- •2.1 Строение Вселенной
- •2.2 Созвездия
- •2.3 Видимое движение небесных светил
- •2.4 Общие сведения о Земле
- •2.5 Доказательство шарообразности Земли, её вращения вокруг оси и годичного движения вокруг Солнца.
- •2.6 Фигура и размеры Земли
- •Литература к разделу
- •3. Основы сферической астрономии
- •3.1 Основные понятия сферической тригонометрии
- •3.1.1 Свойства сферического треугольника
- •3.1.2 Решение сферического треугольника
- •3.2 Небесная сфера, основные точки и круги.
- •3.3 Системы небесных координат
- •3.3.1 Горизонтальная система координат
- •3.3.2 Первая экваториальная система координат
- •3.3.3 Вторая экваториальная система координат
- •3.3.4 Эклиптическая система координат
- •3.3.5 Географическая система координат
- •3.4 Связь между системами координат
- •3.4.1 Теорема о высоте полюса
- •3.4.2 Связь между географическими долготами и часовыми углами
- •3.4.3 Параллактический треугольник
- •3.5 Суточное вращение небесной сферы
- •1.Незаходящие звёзды
- •2. Восходящие и заходящие звёзды
- •3. Невосходящие звёзды
- •3.6 Горизонтальные координаты светил в кульминациях
- •Для верхней кульминации
- •Для нижней кульминации
- •3.7 Движение Земли вокруг Солнца, изменение экваториальных координат Солнца в течение года.
- •3.8 Следствия годичного движения Земли вокруг Солнца, климатические пояса Земли.
- •3.9 Сумерки, белые ночи.
- •3.10 Время, системы измерения времени в астрономии.
- •3.10.1 Звездное время.
- •3.10.2 Солнечное время.
- •3.19 Связь среднего солнечного и звездного времени
- •3.10.3 Связь среднего солнечного и звездного времени.
- •3.10.4 Время на меридиане Гринвича
- •3.10.5 Время на разных меридианах
- •3.10.6 Поясное и декретное время
- •3.10.7 Эфемеридное время
- •3.10.8 Динамические шкалы времени
- •3.10.9 Атомное время
- •3.10.10 Всемирное координированное время.
- •3.10.11 Календарь
- •310.12 Юлианские дни
- •3.10.13 Линия перемены даты
- •3.11 Астрономические факторы
- •3.11.1 Рефракция
- •3.11.2 Параллакс
- •3.11.3 Аберрация
- •3.11.4 Прецессия и нутация
- •Литература к разделу
- •5. Астрономический календарь, постоянная часть/Под ред. В.К.Абалакина. Изд. 7-е, перераб.-л.: Наука, 1981.-704с.
- •Строение и масштаб солнечной системы, движение планет.
- •4.1 Видимое движение планет, конфигурации планет
- •4.2 Прохождение внутренних планет по диску Солнца.
- •4.3 Периоды обращения планет: синодический, звездный (сидеричский)
- •4.4 Законы Кеплера
- •Радиус-вектор планеты за равные промежутки времени описывает равные площади.
- •4.5 Элементы орбит.
- •4.6 Закон всемирного тяготения
- •4.6.1 Следствия закона всемирного тяготения
- •4.6.2 Движение тела под действием силы тяготения
- •4.6.2 Классификация орбит в задаче двух тел
- •4.7 Определение масс небесных тел
- •4.8 Движение исз
- •4.9 Орбита Луны и ее возмущения
- •4.10 Видимое движение и фазы Луны
- •4.11 Периоды обращения Луны
- •4.12 Вращение и либрации Луны
- •4.13 Затмения Луны и Солнца
- •Литература к разделу
- •5. Астрономический календарь, постоянная часть/Под ред. В.К.Абалакина. Изд. 7-е, перераб.-л.: Наука, 1981.-704с
- •5. Космонавтика
- •5.1 История
- •5.2 Значение освоения космоса
- •5.3 Сегодняшнее состояние космических программ и перспективы их развития
- •5.4 Ракеты-носители
- •5 .5 Вклад Кондратюка
- •Литература к разделу
- •Приложения Приложение 1 Приложении 1.1 Основные этапы освоения космоса
- •Приложение 1.2: Космические агентства
- •Приложение 1.3: Важные космические программы и полёты ка разных стран
- •1.3.1 Искусственные спутники Земли (исз)
- •1.3.2. Космические телескопы
- •1.3.3. Автоматические межпланетные станции
- •1.3.4. Лунные станции
- •1.3.5. Пилотируемые полёты
- •1.3.6. Орбитальные станции
- •1.3.7. Частные космические корабли
- •Приложение - 2
- •Iau Резолюция по планетам Резолюция 5a
3.10.4 Время на меридиане Гринвича
Время на меридиане Гринвича обозначают соответствующей большой
буквой S или M. Среднее солнечное время (M) на гринвичском меридиане еще называют всемирным (мировым) временем. Принятое международное обозначение всемирного времени UT (Universal Time).
Звездное время в Гринвичскую полночь обозначают S0. Оно дается в астрономических таблицах (А.Е.), на каждую дату года. Знание значения звёздного времени в определённые моменты всемирного, которое относится к системе солнечного времени, позволяет осуществлять переход между шкалами времени. Звёздное время связывает прямое восхождение светила и часовой угол
s=+t ,
поэтому для Солнца в нижней кульминации можно записать:
s=+12h ,
при этом для Гринвича это будет S, но в течении суток меняется мало, следовательно S0.+12h. Так как в моменты равноденствий и солнцестояний значения известны, то можно приблизительно знать и значения S0 для этих дат. В таблице 4 приведены значения прямого восхождения Солнца и звёздного времени для этих моментов.
Таблица4. Значения и S0 для равноденствий и солнцестояний
№ п/п |
Астрономическое событие |
Дата |
|
S0 |
1 |
Весеннее равноденствие |
21.03 |
0h 00m |
12h 00m |
2 |
Летнее солнцестояние |
22.06 |
6h 00m |
18h 00m |
3 |
Осеннее равноденствие |
23.09 |
12h 00m |
0h 00m |
4 |
Зимнее солнцестояние |
22.12 |
18h 00m |
6h 00m |
В XIX веке было доказано, что земная ось и, следовательно, полюса Земли и меридиан Гринвича движутся. Поэтому различают всемирное время на мгновенном Гринвичском меридиане UT0 и UT1 всемирное время среднего Гринвичского меридиана. UT1 получается исправлением всемирного времени UT0 поправкой за движение географических полюсов
UT1 = UT0+ .
Поправка зависит от координат мгновенного полюса xp, yp , отсчитываемых относительно общепринятого Международного условного начала (Conventional International Origin), и имеет вид
=(xpsin yp cos)tan,
где , координаты места наблюдения.
3.10.5 Время на разных меридианах
Для определения долгот пунктов важное значение имеет знание времени на различных меридианах в один и тот же физический момент. Принцип определения разности долгот, а следовательно и долготы любого пункта относительно исходного меридиана да в разделе 3.4.
Так как t2 t1 = 2 1 =∆λ , то для одного светила можно записать:
t2 t1 = s2s1= 2 1=∆λ или s2= s1+∆λ.
Если первый пункт находится на меридиане Гринвича, то s1= S, ∆λ= 2 или для любого пункта
s= S+λ .
То же равенство справедливо и для солнечного времени:
m=M+ λ .
То есть разность времен на разных меридианах равна разности долгот, а если на медиане Гринвича имеется S, M, то
s=S+λ; m=M+λ .