
- •Федеральное агентство связи
- •Сборник практических занятий
- •Практическое занятие №17
- •Вычислить неопределенные интегралы методом замены переменной
- •Вычислить неопределенные интегралы методом интегрирования по частям
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •Практическое занятие №18
- •Интегрирование функций, содержащих квадратный трехчлен
- •Интегрирование рациональных дробей
- •Практическое занятие №19
- •Вычисление интегралов от иррациональных функций
- •Вычисление интеграла вида где n- натуральное число
- •Интегрирование некоторых тригонометрических функций
- •Практическое занятие №20
- •Свойства определенного интеграла
- •Замена переменной в определенном интеграле
- •Интегрирование по частям в определенном интеграле
- •Практическое занятие №21
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вычисление площадей плоских фигур с помощью определенного интеграла
- •Вычисление объема тела вращения
- •Приложения определенного интеграла к решению физических задач
- •Задача о нахождении пути, пройденного точкой
- •Задача о нахождении работы переменной силы
- •Практическое занятие №22
- •Вычислить пределы функций
- •Найти области определения функций и построить их на плоскости
- •Понятие функции нескольких переменных
- •Практическое занятие №23
- •Найти частные производные от функций
- •Найти полные дифференциалы функций
- •Доказать равенства
- •Производные функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Практическое занятие №24
- •Вычислить двойные интегралы по указанным прямоугольникам d:
- •Вычислить двойные интегралы по областям g, ограниченным линиями
- •Двойные интегралы
- •Вычисление двойного интеграла
- •Случай прямоугольной области
- •Случай криволинейной области
- •Практическое занятие №25
- •Геометрические приложения двойных интегралов
- •1) Вычисление площадей в декартовых координатах
- •Практическое занятие №26
- •Найти общее решение дифференциальных уравнений
- •Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
- •Дифференциальные уравнения с разделяющимися переменными
- •Практическое занятие №27
- •Найти общее решение дифференциальных уравнений
- •Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Практическое занятие №28
- •Найти общее решение уравнений
- •Найти частное решение уравнений
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Практическое занятие №29
- •Доказать расходимость рядов, используя следствие из необходимого признака сходимости
- •Пользуясь признаком сравнения, исследовать на сходимость ряды
- •Исследовать ряды на сходимость, используя признак Даламбера
- •Исследовать ряды на сходимость, используя радикальный признак Коши
- •Исследовать на абсолютную и условную сходимость ряды
- •Понятие числового ряда
- •Примеры рядов
- •Свойства рядов
- •Необходимое условие сходимости ряда
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Практическое занятие №30
- •Найти области сходимости степенных рядов
- •Разложить в ряд Маклорена функции
- •Степенные ряды
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Маклорена
Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
|
Вариант 1 |
Вариант 2 |
Вариант 3 |
Вариант 4 |
Вариант 5 |
1 |
если
|
если
|
|
если
|
если
|
2 |
если
|
если
|
если
|
, если
|
если
|
Порядок проведения занятия:
Получить допуск к работе
Выполнить задания
Ответить на контрольные вопросы.
Содержание отчета:
Наименование, цель занятия, задание;
Выполненное задание;
Ответы на контрольные вопросы.
Контрольные вопросы для зачета:
Дать определение дифференциального уравнения первого порядка.
Какое уравнение называется линейным?
Какое уравнение называется однородным?
Как решаются дифференциальные уравнения первого порядка?
ПРИЛОЖЕНИЕ
Однородные уравнения
Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:
Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.
Любое
уравнение вида
является однородным, если функции P(x,
y) и Q(x,
y) – однородные
функции одинакового измерения.
Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.
Рассмотрим
однородное уравнение
Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:
Т.к. параметр
t вообще говоря
произвольный, предположим, что
.
Получаем:
Правая
часть полученного равенства зависит
фактически только от одного аргумента
,
т.е.
Исходное дифференциальное уравнение таким образом можно записать в виде:
Далее заменяем
y = ux,
.
таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.
Далее, заменив вспомогательную функцию u на ее выражение через х и у и, найдя интегралы, получим общее решение однородного дифференциального уравнения.
Пример 1.
Решить уравнение
.
Решение. Введем вспомогательную функцию u.
.
Отметим, что
введенная нами функция u
всегда положительна, т.к. в противном
случае теряет смысл исходное
дифференциальное уравнение, содержащее
.
Подставляем в исходное уравнение:
Разделяем
переменные:
Интегрируя,
получаем:
Переходя от вспомогательной функции обратно к функции у, получаем общее решение:
Линейные уравнения
Дифференциальное уравнение называется линейным относительно неизвестной функции и ее производной, если оно может быть записано в виде:
при этом, если правая часть Q(x) равна нулю, то такое уравнение называется линейным однородным дифференциальным уравнением, если правая часть Q(x) не равна нулю, то такое уравнение называется линейным неоднородным дифференциальным уравнением.
P(x) и Q(x)- функции непрерывные на некотором промежутке a < x < b.