
- •Федеральное агентство связи
- •Сборник практических занятий
- •Практическое занятие №17
- •Вычислить неопределенные интегралы методом замены переменной
- •Вычислить неопределенные интегралы методом интегрирования по частям
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла:
- •Методы интегрирования
- •1. Непосредственное интегрирование
- •2. Метод замены переменной (метод подстановки)
- •Практическое занятие №18
- •Интегрирование функций, содержащих квадратный трехчлен
- •Интегрирование рациональных дробей
- •Практическое занятие №19
- •Вычисление интегралов от иррациональных функций
- •Вычисление интеграла вида где n- натуральное число
- •Интегрирование некоторых тригонометрических функций
- •Практическое занятие №20
- •Свойства определенного интеграла
- •Замена переменной в определенном интеграле
- •Интегрирование по частям в определенном интеграле
- •Практическое занятие №21
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вычисление площадей плоских фигур с помощью определенного интеграла
- •Вычисление объема тела вращения
- •Приложения определенного интеграла к решению физических задач
- •Задача о нахождении пути, пройденного точкой
- •Задача о нахождении работы переменной силы
- •Практическое занятие №22
- •Вычислить пределы функций
- •Найти области определения функций и построить их на плоскости
- •Понятие функции нескольких переменных
- •Практическое занятие №23
- •Найти частные производные от функций
- •Найти полные дифференциалы функций
- •Доказать равенства
- •Производные функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Практическое занятие №24
- •Вычислить двойные интегралы по указанным прямоугольникам d:
- •Вычислить двойные интегралы по областям g, ограниченным линиями
- •Двойные интегралы
- •Вычисление двойного интеграла
- •Случай прямоугольной области
- •Случай криволинейной области
- •Практическое занятие №25
- •Геометрические приложения двойных интегралов
- •1) Вычисление площадей в декартовых координатах
- •Практическое занятие №26
- •Найти общее решение дифференциальных уравнений
- •Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
- •Дифференциальные уравнения с разделяющимися переменными
- •Практическое занятие №27
- •Найти общее решение дифференциальных уравнений
- •Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
- •Однородные уравнения
- •Линейные уравнения
- •Линейные однородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения
- •Метод Бернулли
- •Практическое занятие №28
- •Найти общее решение уравнений
- •Найти частное решение уравнений
- •Дифференциальные уравнения высших порядков
- •Уравнения, допускающие понижение порядка
- •Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Практическое занятие №29
- •Доказать расходимость рядов, используя следствие из необходимого признака сходимости
- •Пользуясь признаком сравнения, исследовать на сходимость ряды
- •Исследовать ряды на сходимость, используя признак Даламбера
- •Исследовать ряды на сходимость, используя радикальный признак Коши
- •Исследовать на абсолютную и условную сходимость ряды
- •Понятие числового ряда
- •Примеры рядов
- •Свойства рядов
- •Необходимое условие сходимости ряда
- •Признак сравнения рядов с неотрицательными членами
- •Признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакочередующиеся ряды
- •Признак Лейбница
- •Абсолютная и условная сходимость рядов
- •Признаки Даламбера и Коши для знакопеременных рядов
- •Практическое занятие №30
- •Найти области сходимости степенных рядов
- •Разложить в ряд Маклорена функции
- •Степенные ряды
- •Разложение функций в степенные ряды
- •Формула Маклорена
- •Представление некоторых элементарных функций по формуле Маклорена
Дифференциальные уравнения с разделяющимися переменными
Дифференциальное уравнение первого порядка у′ = f(x, y) называется уравнением с разделяющимися переменными, если его можно представить в виде:
у′ = f1(x) ∙ f2(y).
При решении дифференциальных уравнений с разделяющимися переменными полезно придерживаться следующей схемы:
- разделить переменные (т.е. в одной части уравнения должно быть выражение, содержащее только переменную х, в другой – переменную у);
- найти интегралы от обеих частей уравнения, найти частное решение уравнения;
- найти частное решение, удовлетворяющее начальным условиям (если они заданы).
Пример 2. Найти общее решение дифференциального уравнения: ydy + xdx = 0
Решение. Сначала разделим переменные, т.е. запишем уравнение в виде
ydy = -xdx,
затем найдем интегралы от обеих частей уравнения:
∫ ydy = -∫xdx,
получим
Пример 3. Найти частное решение дифференциального уравнения (решить задачу Коши для заданных начальных условий): (1+x2)dy – 2x(y+3)dx = 0, если у = -1 при х = 0.
Решение. Сначала найдем общее решение. Разделим переменные (для этого выражение (– 2x(y+3)dx) перенесем в правую часть и разделим обе части уравнения на (1+x2)(y+3)).
Получим:
,
,
найдем интегралы от обеих частей:
Вычислим отдельно каждый интеграл.
1.
.
Введем новую переменную t
= у+3,
тогда dt
= (у+3)′∙
dу
= dу,
т.е. dt
= dу.
Подставим новую переменную в интеграл:
=
= ln
+C
= ln
+C
2.
.
Введем новую переменную t
= 1+x2
, тогда
dt
= (1+x2)′∙
dx
= 2xdx,
откуда dx
=
.
Подставим новую переменную в интеграл:
=
=
=
ln
+C
=
ln
Найдем общее решение данного уравнения:
Для нахождения
частного решения подставим в общее
решение вместо х и у заданные
начальные значения:
,
и найдем С: С = ln 2.
Затем подставим в общее решение получившееся значение C:
Практическое занятие №27
Наименование занятия: Решение однородных и линейных дифференциальных уравнений
первого порядка
Цель занятия: Научиться решать дифференциальные уравнения первого порядка
Подготовка к занятию: Повторить теоретический материал по теме «Обыкновенные дифференциальные уравнения».
Литература:
Григорьев В.П., Дубинский Ю.А. «Элементы высшей математики», 2008г.
Задание на занятие:
Найти общее решение дифференциальных уравнений
|
Вариант 1 |
Вариант 2 |
Вариант 3 |
Вариант 4 |
Вариант 5 |
1 |
|
|
|
|
|
2 |
|
|
|
|
|
3 |
|
|
|
|
|
4 |
|
|
|
|
|
5 |
|
|
|
|
|
6 |
|
|
|
|
|