
- •Зміст лекції
- •1.Мікробіологія як наука.
- •Значення мікробіології в підготовці медичних працівників.
- •Історія розвитку мікробіології. Вітчизняні мікробіологи, їх внесок у розвиток науки. Досягнення мікробіології в боротьбі з інфекційними хворобами. Мікробіологічна служба в Україні.
- •Досягнення мікробіології в боротьбі з інфекційними хворобами. Мікробіологічна служба в Україні.
- •Поняття про класифікацію мікроорганізмів.
- •Будова бактеріальної клітини
- •Коротка морфологічна характеристика грибів, спірохет, найпростіших, рикетсій, хламідій, мікоплазм, вірусів.
- •Поняття про хімічний склад мікроорганізмів. Основні фізіологічні процеси у бактерій. Живлення, дихання, ріст і розмноження бактерій. Умови культивування бактерій.
- •6. Характеристика поживних середовищ. Поняття про культуральні і біохімічні властивості мікроорганізмів. Бактеріологічний метод дослідження, значення для діагностики.
- •Поняття про культуральні властивості мікроорганізмів. Бактеріологічний метод дослідження, значення його для діагностики
- •Лекція № 2
- •Зміст лекції
- •1.Поширення мікробів у природі. Мікрофлора організму людини, її значення. Гнотобіологія. Циркуляція патогенних мікроорганізмів у довкіллі. Мікроекологія. Поширення мікробів у природі
- •Мікрофлора організму людини, її значення
- •Циркуляція патогенних мікроорганізмів у довкіллі. Мікроекологія
- •Вплив фізичних, хімічних і біологічних факторів на мікроби
- •Транскрипція Транскрипція Трансляція
- •5.Бактеріофаг, його природа і практичне застосування. Вплив бактеріофага на мінливість мікроорганізмів.
- •7.Вплив антибіотиків на мінливість мікроорганізмів. Побічна дія антибіотиків і методи її подолання. Антибіотикограма, її практичне застосування. Противірусні хіміотерапевтичні препарати. Антисептики.
- •Антибіотикограма.
- •Хіміотерапевтичні препарати
- •Лекція № 3
- •Зміст лекції Визначення понять "інфекція", "інфекційний процес", "інфекційна хвороба". Основні ознаки інфекційних хвороб
- •Характеристика мікроорганізмів — збудників інфекційних хвороб
- •Форми інфекційного процесу
- •Динаміка інфекційної хвороби
- •Резервуари та джерела інфекції. Механізми і шляхи проникнення мікробів у макроорганізм. Фактори інфекційного процесу
- •Форми поширення інфекцій
- •Поняття про внутрішньолікарняну інфекцію
- •Принципи діагностики інфекційних хвороб. Експериментальний метод дослідження
- •Принципи профілактики та лікування інфекційних хвороб
- •Лекція № 4
- •Зміст лекції Визначення поняття "імунітет". Види імунітету
- •Фактори природної неспецифічної резистентності
- •Види імунітету
- •Імунна система. Центральні та периферичні органи імунної системи
- •Антигени, їх властивості
- •Специфічні фактори імунітету
- •Вікові особливості імунітету
- •Реакції імунітету, їх практичне застосування
- •Лекція № 5
- •Зміст лекції
- •Класифікація вакцин. Принципи виготовлення вакцин та анатоксинів
- •Методи вакцинації. Ревакцинація
- •Сироватки. Правила введення. Серопрофілактика і серотерапія
- •Поняття про моноклональні антитіла
- •Поняття про алергію, її основні форми
- •Лекція № 6
- •Зміст лекції Загальна характеристика гноєтворних коків
- •Грампозитивні коки стафілококи
- •Стрептококи
- •Пневмококи
- •Грамнегативні коки
- •Менінгококи
- •Гонококи
- •Лекція № 7
- •Зміст лекції
- •Ешерихії
- •Сальмонели
- •Черевний тиф та паратифи аів
- •Збудники харчових токсикоінфекцій
- •Короткі дані про умовно-патогенні мікроорганізми
- •Клебсієли
- •Ієрсиніі
- •Синьогнійна паличка
- •Короткі дані про кампілобактерії і гелікобактерії
- •Лекція № 8
- •Зміст лекції Загальна характеристика збудників холери, чуми, туляремії, бруцельозу, сибірки і захворювань групи особливо небезпечних інфекцій
- •Збудник туляремії
- •Мал. 25. Збудник туляремії в чистій культурі
- •Збудники бруцельозу
- •Збудник сибірки
- •Лекція № 9
- •Зміст лекції коринебактерії дифтерії
- •Бордетели
- •Мікобактерії туберкульозу
- •Лекція № 10
- •Зміст лекції Патогенні клостридії. Неклостридіальні анаероби Конкретні цілі:
- •Збудник правця
- •Збудник ботулізму
- •Збудники газової гангрени
- •Патогенні спірохети
- •Трепонеми
- •Борелії
- •Лептоспіри
- •Лекція № 11
- •Зміст лекції рикетсії
- •Збудник ендемічного висипного тифу (тифу щурів)
- •Мікоплазми
- •Патогенні гриби
- •1 Для самостійного опрацювання
- •Збудники поверхневих мікозів
- •Збудники кандидозів (кандидамікозів)
- •Лекція № 12 Тема лекції: Віруси. Рнк-геномні віруси
- •Зміст лекції
- •Ортоміксовіруси
- •Параміксовіруси
- •Вірус епідемічного паротиту
- •Вірус кору
- •Вірус сказу
- •Пікорнавіруси
- •Віруси Коксакі
- •Віруси echo
- •Віруси гепатиту
- •Вірус гепатиту а
- •Вірус гепатиту с
- •Ретровіруси
- •Вірус імунодефіциту людини
- •Лекція № 13
- •Зміст лекції Вірус гепатиту в
- •Поксвіруси. Вірус натуральної віспи
- •Онковіруси
- •Герпесвіруси
- •Віруси простого герпесу
- •Вірус вітряної віспи
- •Цитомегаловірус
- •Вірус Епстейна—Барр
Транскрипція Транскрипція Трансляція
Виділяють такі особливості генетики бактерій:
1. Гени бактерій організовані в одну молекулу ДНК, яку називають хромосомою. Хромосома у бактерій розміщена вільно у цитоплазмі і не відокремлена від неї мембранами, але пов'язана з певними рецепторами на цитоплазматичній мембрані клітини. Оскільки довжина хромосоми набагато перевищує довжину бактеріальної клітини (довжина палички Е. соїі становить 1,5—3,0 мкм, а довжина її хромосоми — 1,2 мм), то вона перебуває у суперспіралізованій формі.
Вміст ДНК у бактерій непостійний, за сприятливих умов може збільшуватися у декілька (4—8) разів. Біологічне значення цього явища полягає в тому, що під час збільшення ДНК утворюється декілька копій генів, зростає кількість рибосом, збільшується швидкість біосинтезу клітинних структур, а отже, і швидкість розмноження — одна з головних умов збереження виду у природі.
Передача генетичної інформації відбувається не тільки по вертикалі (від материнської клітини до дочірньої), а й по горизонталі (від клітини до клітини).
Носіями спадковості у бактерій є не тільки ті гени, що містяться у хромосомі, а й ті, що містяться у позахромосомних молекулах ДНК: плазмідах, транспозонах, інсерційних послідовностях.
Повний набір генів бактеріальної клітини становить її геном (генотип). Бактеріальна хромосома має два типи генів: структурні гени (цистрони) і гени-регулятори. Гени-цистрони кодують структуру молекул білків, які синтезуються в клітині (ферментів, токсинів та ін.). Унаслідок зміни структурного гена синтезується білок зі зміненими властивостями. Гени-регулятори регулюють активність структурних генів. Робота генів спрямована на здійснення життєвого циклу клітини. Оскільки він включає безліч біохімічних реакцій, тісно пов'язаних між собою, то це вимагає добре узгодженої у часі роботи генів. Така узгодженість можлива лише за умови чіткого керування ними.
Основною структурно-функціональною одиницею хромосоми є оперон (схема 3). Це група структурних генів (цистронів), які фізично з'єднані один з одним і з геном-оператором. Ген-оператор контролює вираження всієї групи цистронів, що входять в один оперон, тобто він здатний "включати" і "виключати" трансляцію (читання) генетичної інформації з генів-цистронів. Оперон (структурні гени і ген-оператор) перебуває під контролем гена-регулятора, який кодує синтез білка-репресора. Ген-регулятор контролює один або декілька оперонів. До складу оперона входить промотор. Промотор — це ділянка ДНК, з якою взаємодіє РНК-полімераза і з якої починається синтез матричної РНК. У складі оперонів можуть бути й інші регуляторні елементи.
Сукупність усіх ознак і властивостей організмів, що формуються в процесі індивідуального розвитку внаслідок реалізації геному, називається фенотипом. Зміна навколишнього середовища спричинює зміни метаболізму мікроорганізмів, а інколи і зміну генетичних структур, що призводить до зміни їх властивостей, тобто умови навколишнього середовища сприяють експресії (прояву) генів або пригніченню їх функції.
Причинами мінливості можуть бути фізичні, хімічні і біологічні фактори навколишнього середовища: різні види випромінювання, магнітні поля, низька або висока температура, недостатність вологи, поживних речовин, солі літію, хіміотерапевтичні препарати, антибіотики, фаги тощо.
Під час культивування мікроорганізмів у лабораторних умовах причиною мінливості мікроорганізмів може бути тривале вирощування їх на несприятливих поживних середовищах або пасаж в організмі несприйнятливих тварин. У разі відновлення оптимальних умов культивування мікроорганізмів, пасажів на сприятливих поживних середовищах і зараження сприйнятливих тварин втрачені ознаки відновлюються.
Мікроорганізми здатні змінювати морфологічні, тинкторіальні, культуральні, біохімічні, біологічні й інші ознаки.
Мінливість морфології мікробів проявляється в тому, що бактеріальна клітина може змінювати свою форму: паличкоподібні форми бактерій можуть набувати колбоподібної, ниткоподібної, дріжджеподібної форми, вигляду розгалуженої нитки, що нагадує міцелій гриба тощо. Разом із тим змінюються й інші ознаки: утворення джгутиків, спори, капсули, спорідненість до барвників (мінливість тинкторіальних ознак). Будь-яка зміна морфологічних ознак супроводжується зміною культуральних і фізіологічних властивостей, тобто зміни в бактеріальній клітині взаємопов'язані.
Мінливість культуральних властивостей проявляється як на щільних, так і в рідких поживних середовищах. На щільному поживному середовищі мікроорганізми можуть утворювати колонії двох основних типів (табл. 2): гладенькі, S-форми (від англ. smooth — гладенький) і шорсткі, R-форми (від англ. rough — шорсткий).
Така мінливість називається дисоціацією. Зі зміною форми колоній змінюються й інші властивості бактерій.
Таблиця 2. Основні властивості бактерій із S I R-колоній
S-форма |
R-форма |
Колонії випуклі, гладенькі, блискучі, правильної форми, з рівним краєм |
Колонії неправильної форми, шорсткі, мутні, приплюснуті, з нерівним краєм |
У рухливих бактерій є джгутики |
Рухливі бактерії можуть втрачати джгутики |
У капсульних бактерій добре розвинена капсула |
Капсульні бактерії можуть втрачати капсулу |
Біохімічно активні |
Біохімічно малоактивні |
Вірулентні |
Маловірулентні або невірулентні |
Виділяються частіше у гострий період хвороби |
Виділяються при хронічній хворобі і носійстві |
Клітини нормальної морфології |
Клітини: короткі палички або кокоподібні |
Чутливі до фага |
Менш чутливі до фага |
Погано піддаються фагоцитозу |
Легко піддаються фагоцитозу |
Більшість бактерій патогенні в S-формі, але є винятки: так, збудники туберкульозу, чуми, сибірки більш патогенні у R-формі.
У рідких поживних середовищах S-форма бактерій зазвичай утворює рівномірне помутніння, R-форма — осад, пристінковий ріст, плівку, а середовище залишається прозорим.
Мінливість ферментативних функцій проявляється в тому, що мікроби виробляють певні ферменти (адаптивні) тільки за наявності субстрату, тобто субстрат індукує синтез ферменту. Так, стафілокок виробляє фермент пеніциліназу тільки за наявності пеніциліну.
Мінливість біологічних властивостей проявляється у зниженні ступеня патогенності хвороботворних видів мікроорганізмів, але при цьому зберігаються їх антигенні властивості. Такі штами мікроорганізмів були використані для виготовлення атенуйованих (ослаблених) живих вакцин. Атенуйовані штами мікроорганізмів можна отримати шляхом тривалого пересівання культури на несприятливих поживних середовищах. Так, французькі вчені А. Кальмет і Ш. Герен пересівали штам мікобактерій туберкульозу протягом 13 років через кожні 14 діб (зробили 230 пасажів) на картопляному середовищі з бичачою жовчю (несприятливе поживне середовище для мікобактерій туберкульозу). Штам мікроорганізмів втратив патогенні властивості і був використаний для виготовлення живої вакцини проти туберкульозу. Цю вакцину назвали BCG — Bacille Calmette—Guerin (БЦЖ).
Розрізняють дві форми мінливості: неспадкову — фенотипову і спадкову — генотипову.
Фенотипова мінливість (модифікаційна) виникає зі зміною факторів навколишнього середовища, які не змінюють структуру генетичного апарату, а отже, не передається у спадок. Фенотипова мінливість не має значення для еволюції мікробів, але вона сприяє виживанню мікробної популяції. У разі відновлення оптимальних умов набуті зміни втрачаються. Модифікації (від пізньолат. modificatiu — зміна) можуть стосуватися різних властивостей мікробів: морфологічних, культуральних, біохімічних. При цьому діапазон модифікаційних змін обмежений нормою реакцій, зумовленою генотипом. Прикладом морфологічних модифікацій може бути тимчасова втрата клітинної стінки і перетворення бактерій на L-форму. Після усунення факторів, що спричинили це перетворення, настає реверсія (від лат. reversio — повернення) нестабільних L-форм у вихідну форму.
Зниження вмісту кисню спричинює порушення пігментоутворення у мікобактерій туберкульозу, стафілокока, що призводить до культуральних модифікацій. Вважають, що змінені умови навколишнього середовища активують гени, які за інших умов були заблоковані ("мовчазні" гени).
Біохімічні модифікації проявляються в індукції або репресії структурних генів, що перебувають під контролем гена-регулятора. Так, кишкова паличка виробляє фермент бета-галактозидазу (фермент, що розщеплює дисахарид лактозу до моносахаридів глюкози і галактози) тільки за наявності лактози. Модифікаційні зміни слід враховувати під час ідентифікації культури мікроорганізмів.
Генотипова мінливість пов'язана зі змінами генетичних структур клітин, тому передається у спадок. Вона проявляється у вигляді мутацій і рекомбінацій.
Мутації (від лат. mutatio — зміна) — це зміни в генотипі, які стабільно успадковуються. Змінені внаслідок мутацій мікробні клітини називаються мутантами, а фактори, які спричинюють появу мутантів — мутагенами. Мутації відіграють важливу роль в еволюції мікробів. За походженням мутації бувають спонтанні й індуковані. Спонтанні (від лат. spontanaus — добровільний, мимовільний) мутації виникають у мікробних популяціях in vivo (в живому організмі) та in vitro (поза живим організмом) внаслідок порушень структури генів під час реплікації нуклеїнової кислоти під впливом неконтрольованих факторів. Середня частота мутацій — 1 мутантна клітина на 1 000 000 нормальних клітин.
Індуковані (від лат. inductio — наведення) — це спрямовані мутації, які виникають унаслідок штучного впливу на мікроорганізми спеціальних мутагенів: іонізуючої радіації, ультрафіолетового випромінювання, антибіотиків, температури, хімічних речовин тощо. Молекулярні механізми спонтанних і індукованих мутацій однакові.
За величиною змін у геномі розрізняють генні і хромосомні мутації. Генні мутації частіше бувають точковими. Вони пов'язані з випаданням (делеція), додаванням (дуплікація) або заміною однієї основи на іншу в молекулі ДНК (рекомбінація). Це призводить до того, що замість однієї амінокислоти кодується інша або утворюється кодон, що не кодує жодної амінокислоти (нонсенсмутація).
Хромосомні мутації (геномні перебудови) супроводжуються випаданням або зміною відносно великих ділянок генома: випадання значної кількості нуклеотидів (протяжна делеція), поворот сегмента хромосоми на 180° (інверсія), переміщення ділянки хромосоми з однієї позиції в іншу (транслокація), повторення будь-якого фрагмента ДНК (дуплікація). Такі мутації найчастіше незворотні і призводять до порушення різних функцій бактеріальної клітини.
Ефекти мутацій можуть стосуватися будь-яких ознак мікроорганізмів: морфологічних, культуральних, біохімічних, біологічних та ін.
За фенотиповими наслідками розрізняють мутації нейтральні, умовно-летальні і летальні. Нейтральні мутації фенотипово не проявляються зміною ознак, оскільки вони не впливають на функціональну активність ферментів, що синтезуються. Мутації, що спричинюють зміну, але не призводять до втрати функціональної активності ферменту, називають умовно-летальними. Летальні мутації характеризуються втратою здатності синтезувати життєво важливі для бактеріальної клітини ферменти.
Основним механізмом передачі генів є вертикальний, тобто передача генів від материнської клітини в спадок дочірнім. Але для бактерій важливою формою обміну генетичною інформацією є перенесення генів по горизонталі, тобто від клітини-донора до клітини-реципієнта. Ці форми передачі спадковості називають генетичними рекомбінаціями.
Генетичні рекомбінації (від лат. ге — префікс, що вказує на повторення або зворотну дію, і combinatio — сполучення) — це обмін генетичним матеріалом між привнесеною ДНК і хромосомою клітини-реципієнта. Іншими словами, це поява нових поєднань генів, що призводить до появи нових ознак у нащадків. Рекомбінують між собою тільки двониткові ДНК, тому коли переноситься одна нитка ДНК, вона спочатку добудовується другою ниткою за законом компл ементарності.
Передача генів від однієї бактеріальної клітини до іншої відбувається по-різному, але найчастіше шляхом трансформації, трансдукції та кон'югації.
Трансформація (від лат. transformo — перетворювати) полягає в тому, що клітина-реципієнт поглинає із зовнішнього середовища фрагмент чужорідної ДНК (найчастіше не більше ніж 0,01 довжини бактеріальної хромосоми). Трансформація може бути спонтанною та індукованою. При індукованій (штучній) трансформації до культури бактерій, що досліджується, додають очищену ДНК іншої культури бактерій, від якої намагаються їй передати генетичні ознаки. Спонтанна трансформація відбувається у природних умовах у разі змішування клітин мікроорганізмів, що генетично відрізняються. ДНК мікробів виділяються у навколишнє середовище у разі лізису клітин або внаслідок активного виділення ДНК життєздатними клітинами-донорами.
Трансформації піддаються не всі клітини в популяції. Клітини, що здатні поглинати донорську ДНК, називають компетентними. Клітина з рекомбінатною ДНК називається мерозиготою. Під час поділу мерозиготи дочірні клітини наслідують ознаки клітини-донора і клітини-реципієнта. При цьому фрагмент молекули донора включається в хромосому реципієнта і витісняє гомологічну ділянку ДНК реципієнта, тобто відбувається заміщення реципієнтного гена на донорський. Ефективність рекомбінацій залежить від ступеня гомологічності ДНК донора і реципієнта, тому внутрішньовидова трансформація відбувається частіше, ніж міжвидова. У природних умовах цей процес відбувається не дуже часто, тому що у бактерій, як і в інших організмів, є система самозахисту геному.
Ефективність генетичної трансформації підвищується за умови оброблення електричним імпульсом суміші бактеріальних клітин і чужорідної ДНК. Цей метод застосовують для отримання рекомбі-нантних штамів бактерій.
Трансдукція (від лат. transductio — переміщення) — це перенесення генетичного матеріалу від одних бактерій до інших за допомогою фагів. Трансдукцію можуть здійснювати як вірулентні, так і помірні фаги різних видів бактерій.
Розрізняють три види трансдукції: неспецифічну (загальну), специфічну (локалізовану) й абортивну. У разі неспецифічної трансдукції в процесі репродукції (в момент збирання фагової часточки) в її головку разом з фаговою ДНК може проникнути будь-який фрагмент ДНК бактерії-донора (він становить близько 1—2,5 % довжини бактеріального геному). У разі проникнення цього фага в іншу бактеріальну клітину (клітину-реципієнт) разом із фаговою ДНК можуть бути перенесені будь-які гени клітини-донора (наприклад, гени, що контролюють синтез токсинів, гени резистентності до антибіотиків).
Специфічна трансдукція полягає в тому, що фаг переносить тільки певні гени від бактерії-донора до бактерії-реципієнта. Цей вид трансдукції здійснюється лише помірними фагами, які у вигляді профага включаються тільки в певні ділянки хромосоми бактеріальної клітини.
Абортивна трансдукція полягає в тому, що привнесений фагом фрагмент ДНК бактерії-донора не включається в хромосому бактерії-реципієнта, а розміщується в її цитоплазмі у вигляді транспозо-на. Він не здатний до реплікації. Під час поділу клітини-реципієнта цей фрагмент передається одній дочірній клітині і врешті-решт втрачається у потомстві.
Фаги трансдукції сприяють обміну генетичною інформацією між бактеріями не тільки одного виду, а й різних видів і навіть родів. Це визначає їх велику роль в еволюції бактерій. Вивчення явища трансдукції дає змогу пояснити випадки фагової (лізогенної) конверсії — зміни метаболізму лізогенної бактеріальної клітини, а отже, і зміни її властивостей. Так, токсигенність багатьох видів бактерій (коринебактерій дифтерії, клостридій ботулізму, стрептококів) зумовлена фаговою конверсією непатогенних штамів, тобто бактерії набувають здатність продукувати екзотоксин у тому випадку, коли в них проникає помірний фаг разом з тюх-геном.
Кон'югація — це процес перенесення генетичного матеріалу через донорські війки під час безпосереднього контакту клітин донора і реципієнта. До кон'югації схильні бактерії, що містять кон'югативні плазміди.
Найбільш типовим представником кон'югативних плазмід є F-плазміда, яка забезпечує донорськими функціями ентеробактерії.
F-плазміда може перебувати в автономному стані або інтегруватися в хромосому клітини і реплікуватися разом із нею.
До позахромосомних факторів спадковості належать плазміди, транспозони, інсерційні послідовності. Всі ці фактори є молекулами ДНК, які різняться за молекулярною масою, об'ємом закодованої в них інформації, здатністю до автономної реплікації та іншими властивостями. Вони не є життєво необхідними для бактеріальної клітини, тому що не несуть інформації про синтез ферментівВсі відомі плазміди — це суперспіралізован імолекули двониткової ДНК, замкнуті в кільце. Вони містять від 1500 до 400 000 пар нуклеотидів. У бактеріальній клітині вони частіше містяться в цитоплазмі у вільному стані, але можуть інтегрувати в геном клітини-хазяїна. Поширюються плазміди серед бактерій вертикально і горизонтально шляхом трансформації, трансдукції і кон'югації. Залежно від того, якими властивостями наділяють плазміди клітину-хазяїна, їх поділяють на різні категорії.
F-плазміда контролює синтез F-пілей, які беруть участь у кон'югації клітин.
R-плазміди (їх існує велика кількість) визначають стійкість (резистентність) бактерій-хазяїнів до лікарських препаратів. Значне поширення И-плазмід серед патогенних і умовно-патогенних бактерій різних видів дуже ускладнює хіміотерапію хвороб, які вони спричинюють. Приблизно у 60—90 % грамнегативних бактерій резистентність до лікарських препаратів пов'язана з И-плазмідами. Останні містять г-ген, який контролює у бактерій синтез ферменту, що зумовлює інактивацію або модифікацію лікарського препарату. В одному г-гені може міститися декілька транспозонів, які контролюють стійкість до різних антибіотиків. Цим пояснюється множинна стійкість бактерій до лікарських препаратів.
Плазміди патогенності контролюють утворення факторів патогенності бактерій: адгезію, колонізацію, утворення біологічно активних речовин, що спричинюють проникнення бактерій у клітини і тканини макроорганізму, утворення токсинів тощо.
Забезпечуючи обмін генетичного матеріалу у бактерій, плазміди відіграють велику роль в їх еволюції. Безконтрольне використання антибіотиків та інших антибактеріальних препаратів різко змінило природні умови існування бактерій і призвело до збільшення частоти виникнення резистентних форм (біологічний засіб самозахисту бактерій). У свою чергу, плазміди також зазнають мутацій під дією різних факторів, що зумовило формування атиповості багатьох збудників інфекційних захворювань.
Фактори бактеріоциногенності — це генетичні елементи бактеріальних клітин, які контролюють синтез специфічних білків — бактеріоцинів, здатних пригнічувати ріст бактеріальних клітин інших штамів цього виду або генетично близьких видів. Бактерії, що містять плазміди бактеріоциногенності, використовують для отримання еубіотиків.
Транспозони, як і плазміди, є суперспіралізованими двонитко-вими молекулами ДНК, замкнутими в кільце. Вони містять 1500— 25 000 нуклеотидів, можуть перебувати у цитоплазмі у вільному стані, а також мігрувати у хромосоми бактеріальної клітини.
Транспозони як носії генетичної інформації здатні передавати гени токсигенності, резистентності до лікарських препаратів, ферментів метаболізму тощо.
Інсерційні, або вставні, послідовності (від англ. insertion — вставка і seguense — послідовності) — це фрагменти двониткової ДНК, які містять 1000—1500 пар нуклеотидів. На відміну від плаз-мід і транспозонів інсерційні послідовності не виявлені у цитоплазмі у вільному стані. Мутагенна дія їх полягає в тому, що, включаючись у бактеріальну хромосому, вони спричинюють (індукують) мутації, координують взаємозв'язок транспозонів, плазмід, як між собою, так і з бактеріальною хромосомою; регулюють активність генів хромосоми.
Для вірусів також характерна фенотипова і генотипова мінливість.
Фенотипова мінливість зумовлена клітиною хазяїна, в якій відбувається репродукція вірусів. Вона проявляється зміною хімічного складу суперкапсиду (зовнішньої оболонки віріону), пов 'язаною з включенням до її складу ліпідів і вуглеводів клітини-хазяїна.
Генотипова мінливість може проявлятися у вигляді мутацій і ре-комбінацій.
Спонтанні мутації виникають під час реплікації їх нуклеїнових кислот і можуть стосуватися різних властивостей вірусів.
Індуковані мутації виникають під впливом тих самих фізичних і хімічних мутагенів, які зумовлюють мутації у бактерій. Одні з них (азотиста кислота, нітрозогуанідин) діють на позаклітинний вірус (віріон), інші (акредин, аналоги азотистих основ) — на внутрішньоклітинний вірус під час реплікації його нуклеїнової кислоти.
Мутанти вірусів різняться за антигенною структурою, чутливістю до температури та іншими властивостями.
Рекомбінації відбуваються у разі одночасного зараження двома вірусами чутливої до них клітини-хазяїна.
Розвиток молекулярної генетики створив умови для вивчення молекулярно-генетичних механізмів патогенних та імуногенних властивостей мікроорганізмів, причин появи нових варіантів патогенних і умовно-патогенних мікроорганізмів, селекції патогенних мікроорганізмів зі зниженою вірулентністю (ці мікроби часто втрачають здатність спричинювати формування імунітету). А це призводить до формування латентних (прихованих) і хронічних форм інфекцій, появи штамів патогенних мікроорганізмів, резистентних до лікарських і дезінфекційних препаратів, появи атипових форм інфекційних хвороб. Це дало змогу пояснити зміни в патогенетичному і клінічному перебігу інфекційних хвороб, причини поширення внутрішньолікар-няних інфекцій і розробити заходи їх профілактики.
За допомогою генетичних методів отримані культури мікроорганізмів, які використовуються у виробництві вакцин, анатоксинів, вітамінів, амінокислот, антибіотиків, продуктивність яких в 200— 1000 разів вища за таку у диких штамів.
Велике наукове і практичне значення має новий розділ генетики — генна інженерія. Методи генної інженерії дають змогу створити штучні гени із нуклеотидних послідовностей, які несуть задану генетичну інформацію, а також розробити способи перенесення генів в інші клітини прокаріотів або еукаріотів. Унаслідок цього мікроорганізми стають продуцентами таких речовин, які хімічно отримати дуже важко, а інколи і неможливо. Нині завдяки розвитку генної інженерії методом мікробіологічного синтезу виробляють лікувально-профілактичні препарати: інсулін, інтерферони, інтерлейкіни, гормони, вітаміни, високоочищені вакцини (так, після введення гена вірусу гепатиту В у дріжджові клітини була отримана рекомбінант-на вакцина). Мінливість мікроорганізмів слід враховувати при ідентифікації культури атипових форм мікроорганізмів під час проведення діагностичних і профілактичних лабораторних досліджень.
Результати досліджень генетики мікроорганізмів були використані під час вивчення молекулярно-генетичних закономірностей вищих організмів