Домашняя работа №1. Динамика материальной точки. Вариант - 10. (2 семестр)
.docМосковский Государственный Университет Инженерной Экологии
Кафедра «Теоретическая механика»
Тема: «Динамика материальной точки»
Вариант – 10.
Работу выполнил: Рузанов Леонид
Студент группы: М - 23
Работу проверил: Серов Михаил Владимирович
2005 год.
Москва.
Точка массой m имеет начальную скорость V0 и движется горизонтально прямолинейно в среде, сопротивление которой пропорционально квадратному корню из величины скорости, т.е. равна (k – величина постоянная).
По истечении какого времени точка будет находиться в покое?
Какой путь пройдёт точка до остановки?
Дано:
m;
V(0)=V0;
R=
H-?
T-?
Решение:
1. Рассмотрим движение точки М.
2. Укажем оси координат.
Направим ось х по направлению движения.
3. Изобразим внешние силы:
а) заданные: нет;
б) реакций связей (среда): R.
4. Применим II закон Ньютона и составим общее уравнение движения точки:
(1)
5. Проецируем (1) на ось х:
; ; (2) с начальным условием V(0)=V0 (3).
6. Определим путь, пройденный точкой до остановки (H):
Решим это равенство с условием (3):
Проинтегрируем полученное равенство:
, получим:
(4)
Из (3) => и тогда равенство (4) примет вид:
.
Подставив сюда V=0, находим пройденный путь до остановки:
.
7. Определим через какое время точка будет находиться в покое (T):
Решаем (2) методом разделения переменных:
(5)
Из условия (3) следует, что:
и тогда равенство (5) примет вид:
Подставив сюда V=0, находим время, через которое точка будет находиться в покое:
.
Ответ: ; .