
- •2. Основные законы химии (сохранения массы, постоянства состава, кратных и объемных отношений, эквивалентов), границы их применимости
- •3. Основные законы неорганической химии. Газовые законы (Гей-Люссака, Бойля-Мариотта, Шарля, Менделеева-Клаперона, Авогадро). Идеальные и реальные газы.
- •4. Важнейшие классы неорганических соединений. Бинарные и многоэлементные соединения. Оксиды: определение, классификация, номенклатура, способы получения, химические свойства
- •Амфотерные оксиды При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:
- •5.Кислоты: определение, классификация, номенклатура, способы получения, химические свойства
- •6. Основания: определение, классификация, номенклатура, способы получения, химические свойства
- •7. Соли: определение, классификация, номенклатура, способы получения, химические свойства
- •8. Строение атома. Развитие теории строения атома.
- •9. Основные положения квантовой механики: уравнение де Бройля, принцип неопределенности Гейзенберга, уравнение Шредингера
- •10. Квантовые числа
- •11. Атомные орбитали:s-,p-,d-,f- ао. Правила заполнения атомных орбиталей: правила Клечковского, принцип Паули, правило Хунда
- •12.Периодическая система элементов д.И.Менделеева s-,p-,d-,f- элементы. Периодический закон.
- •14.Химическая связь . Характеристика связи. Виды связи
- •15. Метод валентных связей. Гибридизация. Геометрическая форма молекул.
- •16.Ковалентная связь: полярная и неполярная. Способы образования ковалентной связи
- •17. Ионная, металлическая связи. Водородная связь
- •18.Строение вещества. Кристаллические решетки, типы, строение.
- •19.Химические системы: растворы. Их характеристика и классификация. Процесс растворения.
- •20. Способы выражения состава раствора (концентрации)
- •21.Электролитическая диссоциация. Электролиты и неэлектролиты. Сильные и слабые электролиты.
- •22. Ионное произведение воды. Водородный и другие показатели среды.
- •23.Растворы сильных электролитов (α,ί и Кд сильного электролита)
- •24. Свойства растворов слабых электролитов (𝛼, Кд слабого электролита в растворе). Закон разбавления Оствальда. Уравнение Вант-Гоффа и Рауля для растворов слабых электролитов
- •25. Повышение температуры кипения и понижение температуры кристаллизации раствора. Антифризы.
- •26. Гидролиз солей. Простой(обратимый) гидролиз
- •27.Сложный(необратимый) гидролиз
- •28.Степень и константа гидролиза. Значение гидролиза. Факторы усиливающие гидролиз
- •29. Энергетика растворения. Растворимость.
- •30.Химическая термодинамика. Предмет, основные понятия химической термодинамики. Первый закон термодинамики.
- •31.Энергетика химических процессов. Тепловые эффекты и термодинамические уравнения. Закон Гесса и следствие из него.
- •32. Энтропия вещества и второе начало термодинамики
- •33.Энергия Гиббса и Гельмгольца- критерии самопроизвольного протекания процессов
- •34.Выявление расчетов термодинамических параметров принципиальных возможностей направления и предела протекания реакции
- •35.Кинетика. Скорость химической реакции и её зависимость от природы и концентрации реагентов. Здм для гомогенных и гетерогенных реакций
- •36. Зависимость скорости хим реакции от температуры. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса
- •37. Уравнение Аррениуса. Зависимость скорости хим реакции от катализаторов. Механизм действия катализаторов. Ингибиторы
- •38. Хим реакции: обратимые и необратимые. Состояние хим равновесия
- •39. Хим равновесие, его признаки. Влияние различных факторов на хим равновесие. Принцип Ле- Шателье
- •40. Константа химического равновесия, ее связь с изменением изобарного потенциала. Выявление возможности протекания реакции в данном направлении
- •41.Окислительно-восстановительные реакции. Типы реакций. Окислители, восстановители
- •Виды окислительно-восстановительных реакций
- •42. Электрохимия. Электрохимический ряд напряжений металлов. Электродный потенциал. Факторы влияющие на величину электродного потенциала. Виды электродов.
- •43. Гальванический элемент Даниэля-Якоби. Процессы происходящие на электродах при работе.
- •44. Уравнение Нернста
- •45. Стандартный водородный электрод, его устройство и назначение. Расчет потенциала нестандартного водородного электрода
- •47. Концентрационный гальванический элемент, его устройство, механизм работы и расчет эдс
- •48. Практическое применение химических источников тока: сухие гальванические элементы, электрохим аккумуляторы, топливные элементы
- •49. Электролиз, определение. Электролизер, его устройство. Электроды. Электролиз расплава электролитов
39. Хим равновесие, его признаки. Влияние различных факторов на хим равновесие. Принцип Ле- Шателье
Пределом протекания обратмых реакций при заданных условиях является достижение состояния равновесия которое характеризуется: 1)в момент равновесия скорости прямой и обратной реакции равны, а концентрации исход веществ и продуктов реакции остаются неизменными при пост внеш условиях K=Cc*DdAa*Bb
K- константа равновесия зависит от температуры и природы реаг веществ, но не зависит от их концентрации. Она показывает во сколько раз скорость прямой реакции больше скорости обратной реакции, если концент реаг веществ равно 1моль/л
2) химическое равновесие неподвижно: изменение температуры, давления, концентр веществ приводит к смещению равновесия в сторону прямо или обратной реакции после чего устанав новое равновесие, но уже при других значениях концентраций реагирующих веществ
Принцип Ле-Шателье: если на систему наход в состоянии хим равновесия оказывается внешнее воздействие, то равновесие смещается в сторону той реакции которая ослабляет это внешнее воздействие
40. Константа химического равновесия, ее связь с изменением изобарного потенциала. Выявление возможности протекания реакции в данном направлении
Конста́нта равнове́сия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия (. Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.
Для реакции, протекающей в изобарно-изотермических условиях, в некотором неравновесном исходном состоянии энергии Гиббса или химические потенциалы реагирующих веществ и продуктов реакции в общем случае не одинаковы, их разность (∆G) может быть рассчитана по уравнению:
∆G=-RT*lnK∆G+lnπ, 𝝅-отношение парциональ давлений участ реакции При 𝝅< K, ∆G<0 реакция идет в прямом направлении, слева направо При 𝝅= K, ∆G=0 реакция достигла равновесного состояния При 𝝅> K, ∆G>0 реакция идет в обратном направлении
41.Окислительно-восстановительные реакции. Типы реакций. Окислители, восстановители
Окисли́тельно-восстанови́тельные реа́кции— это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем. Окисление - процесс отдачи электронов, с увеличением степени окисления. При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов. В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части. При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле. Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель: окислитель + e− ↔ сопряжённый восстановитель.
Восстановле́нием называется процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода,углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др. Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель: восстановитель — e− ↔ сопряжённый окислитель. Несвязанный, свободный электрон является сильнейшим восстановителем.