- •1. Понятие система, элемент системы, их основные признаки.
- •3. Влияние внешних и внутренних факторов на функциональные характеристики систем безопасности жизнедеятельности, пути улучшения характеристик систем.
- •4. Классификация систем, отличительные признаки сложных и больших систем.
- •5. Основные принципы общей динамики систем безопасности жизнедеятельности.
- •7. Эмпирический, проблемно- ориентированный и теоретический анализ техногенных ситуаций на основе общих принципов системного анализа.
- •9. Термины, методы, цель, задачи и проблемы эргономики.
- •10. Эргономические требования к орудиям труда и производственной обстановке.
- •11. Психофизиологические характеристики труда
- •13. Методы исследований в инженерной психологии, их общая характеристика: наблюдение, эксперимент, моделирование
- •14. Психофизиологическая характеристика процесса приёма информации.
- •15. Энергетические и информационные характеристики зрительного анализатора.
- •17.Проектирование средств отображения информации (сои), способы кодирования информации.
- •16. Хранение и переработка информации оператором: память, оперативное мышление.
- •18.Профессиональный отбор и обучение операторов, оценка их эффективности.
- •19.Групповая деятельность операторов, групповая психология, управление деятельностью группы.
- •20. Классификация человеко-машинных систем по признакам структуры взаимодействия, по признакам машинного и человеческого звена
- •21. Динамичность, целеустремленность, самоорганизация и адаптивность как общие признаки человеко-машинных систем.
- •22. Системный подход к человеко-машинным системам.
- •23. Быстродействие, надёжность, своевременность и безопасность как показатели качества чмс.
- •24. Влияние особенностей современного производства на деятельность оператора.
- •25. Основные этапы деятельности оператора в чмс.
- •26. Классификация операторской деятельности, исходя из ее частных особенностей (технолог, наблюдатель, исследователь, руководитель манипулятор).
- •27. Психофизиологические основы деятельности оператора, закон Вебера-Фехнера.
- •28.Психофизиологические, личностные и соматографические методы анализа профессиональных возможностей оператора.
- •29. Надежность как комплексное свойство технического объекта( прибора, устройства, машины, системы)
- •30. Влияние внешних факторов на надёжность и безопасность тех. Систем (тс).
- •31. Основы теории риска; анализ риска; нормативные значения риска. Потенциальный, реальный, индивидуальный, социальный, пренебрижимый, приемлемый риск.
- •33.Метод экспертных оценок в анализе техногенного риска.
- •32. Методы качественного анализа надёжности и безопасности технических систем.
- •35. Мониторинг загрязнения гидросферы.
- •36.Мониторинг загрязнения почв.
- •38.Аналитические методы в мониторинге среды обитания.
- •39.Метрологические аспекты мониторинга среды обитания.
- •40. Фз “Градостроительный кодекс рф”. Состав проектной документации. Экспертиза проектов
- •41. Фз "Об экологической экспертизе".
- •45. Проект нормативов образования отходов и лимитов на их размещения.
- •42.Оценка предполагаемого воздействия объекта проектирования на ос.
- •43. Проект нормативов пдв зв в атмосферу.
- •44. Фз “Водный кодекс рф”. Проект нормативов предельно допустимых сбросов в водный объект
- •Глава 3. Договор. Не требуется заключать договор водопользования или принятия решения о предоставлении водного объекта в пользовании в случае если водный объект используется:
- •46. Требования к местам размещения и обустройству полигонов бытовых (тбо) и токсичных промышленных отходов.
- •47. Очистка промышленных выбросов от аэрозолей (инерционные пылеуловители, циклоны, тканевые фильтры, электрофильтры, скрубберы)
- •48. Абсорбционная очистка промышленных выбросов (физическая и химическая абсорбция, скрубберы, типы насадок, труба Вентурри).
- •49. Адсорбционная очистка промышленных выбросов (физическая и химическая адсорбция, промышленные адсорбенты).
- •50. Механические методы оценки сточных вод (гравитационное разделение, центрифугование, гидроциклоны, фильтрация)
- •51. Химические и физико-химические методы очистки сточных вод (регентные методы, экстракция, коагуляция, флокуляция, ионный обмен, ультрафильтрация).
- •52. Биологические методы очистки сточных вод (аэротенки, окситенки, поля фильтрации, биопруды.Утилизация осадков бос).
- •53. Методы защиты от электромагнитного излучения промышленной частоты и радиочастотного диапазона.
- •54. Защита от шумового загрязнения биосферы. Методы создания акустической обстановки нормативного качества.
- •55. Основные положения гигиены труда.
- •56. Предварительные и периодические медицинские осмотры.
- •58. Санитарно-бытовое обеспечение работников. Санитарные группы производст-ых процессов. Определение кол-ва и числа с/б помещений.
- •63. Вибрация. Классификация вибрации по сн 2.2.4/2.1.8.566-96. Действие на человека. Методы и средства защиты от вибрации.
- •67. Производственная вентиляция. Классификация. Системы естественной вентиляции. Принцип действия. Схемы.
- •68. Системы механической вентиляции – общеобменная и местная, приточная и вытяжная. Принцип действия. Схемы.
- •69. Виды физического труда.
- •70. Тяжесть(т) и напряжённость(н) труда
- •71. Монотонность труда, факторы, формируюшие состояние монотонии, действие на человека, меры профилактики.
- •73. Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряжённости трудового процесса р-2.2.2006 -05.
- •74. Гигиенические требования к условиям труда женщин.
- •75. Основные принципы гос. Политики в области охраны труда.
- •76. Государственный надзор и контроль за соблюдением законодательства об от.
- •77. Обязанности работодателя по обеспечению от.
- •82. Основные законодательные акты, определяющие требования безопасности в области охраны труда, бчс, защиты окружающей среды.
- •79. Организация работы по от.
- •80. Порядок проведения аттестации рабочих мест по условиям труда. Сертификация производственных объектов на соответствие требований от.
- •81. Порядок расследования нс.
- •83. Организация обучения бт
- •87. Рабочее время и время отдыха. Регламентированные перерывы, укороченный рабочий день, дополнительные отпуска.
- •88. Определение процесса горения. Необходимые и достаточные условия для горения.
- •89. Материальный и тепловой баланс процессов горения.
- •90. Особенности горения твердых горючих материалов, легковоспламеняющихся, горючих жидкостей и горючих газов.
- •91. Физико-химические основы механизмов прекращения горения.
- •92. Классификация и выбор огнетушащих веществ.
- •93. Основные причины возникновения пожаров на предприятиях. Обязанности должностных лиц и работников по обеспечению пожарной безопасности на объекте.
- •94. Первичные средства тушения пожаров. Назначение, классификация, порядок содержания в организации.
- •95. Системы автоматической противопожарной защиты. Назначение, классификация, порядок содержания в организации.
- •96. Категорирование зданий и помещений по взрывопожарной и пожарной опасности по сп 12.13130.2009.
- •97. Организация эвакуации людей и материальных ценностей в случае пожара. Разработка плана эвакуации на случай пожара.
- •98. Молнезащита зданий и сооружений.
- •99. Единая гос. С-ма предупр-я и ликвидации чс(рсчс), её задачи и ф-ции.
- •100. Чрезвычайные ситуации чс. Классификация чс:
- •101. Средства защиты в чс:
- •102.Устойчивость функционирования объектов экономики в условиях чс. Пути повышения устойчивости функционирования предприятий.
- •103. Организация работы комиссии объекта экономики по повышению устойчивости функционирования.
- •106. Пыль.Шум Вибрация. Профилактика. Влияиние на организм.
- •107. Инфразвук.Ультразвук.Лазерное излучение. Профилактика. Влияние на организм.
- •109. Анатомия, физиология – определения. Форменные элементы крови. Большие и малые круги кровообращения.
- •110. Анатомия и физиология пищеварительной системы.
- •111. Анатомия центральной и периферической нервной системы. Основные отделы цнс, их функции. Рефлекторная дуга. Рефлексы.
- •112. Анатомия и физиология эндокринной системы
- •113. Понятие случайного процесса. Условия, совместная вероятность, мат. Ожидание, дисперсия, среднеквадрат. Отклонение. Стационарность потока для чс.
- •114. Распределение Гаусса. Центральная предельная теорема и ее применение при проведении наблюдений.
- •115. Корреляция случайных велечин, коэф-т корреляции. Корреляционная и автокорреляционная ф-ия.
- •116. Пороговая обработка: среднее число выбросов (пересечений порога). Понятия дискретного потока случайных событий (сс). Пуассоновский поток – определение свойства.
- •117. Марковским процессом-определение, классификация. Марковская цепь. Матрица переходов.
- •118. Урав-ие Колмогорова-Чепмена.
- •122. Принцип действия автоматического отключения.
- •121. Меры защиты при прямом и косвенном прикосновении в электроустановках до 1 кВ.
- •124. Основные неисправности при эксплуатации автоматического отключения.
- •129. Теория видимости. Влияние загрязняющих веществ на видимость.
- •126. Механизмы образования соединений азота. Фотохимические реакции соединений азота в атмосфере (фотохимический смог).
- •127. Атмосферные реакции образования и гибели озона. Фреоны. Действие фреонов на озоновый слой.
- •128. Механизмы образования соединений серы. Фотохимия соединений серы в атмосфере (смог “лондонского типа”).
- •130. Аэрозоли. Верхняя и нижняя границы размеров аэрозольных частиц. Механизмы образования аэрозоли.
- •131. Основные источники загрязнения атмосферы. Класификация. Естественное и антропогенное загрязнение атмосферы. Влияние атмосферных загрязнений на ос и здоровье населения.
- •132. Основные загрязнители, образующиеся в процессе производства: монооксид и диоксид углерода. Характеристика. Источники образования. Токсичность.
- •133. Основные загрязнители, образующиеся в процессе производства: диоксид серы, сероводород, сероуглерод. Характеристика. Источники образования. Токсичность.
- •134. Основные загрязнители, образующиеся в процессе производства: оксиды азота. Характеристика. Источники образования. Токсичность.
- •136. Загрязнение водной среды нефтью и нефтепродуктами.
- •137. Основные источники загрязнения почвы. Кислотные загрязнения и их последствия для почвы. Экологические последствия применения пестицидов. Загрязнение почвы при использовании очистных сооружений.
- •138. Загрязнение почвы тяжелыми металлами. Влияние тяжелых металлов на живые организмы.
- •139. Особенности производства и виды воздействия черной и цветной металлургии на окружающую среду.
132. Основные загрязнители, образующиеся в процессе производства: монооксид и диоксид углерода. Характеристика. Источники образования. Токсичность.
Оксид углерода СО – неощутимый, бесцветный и не имеющий запаха ядовитый газ, возникающий при неполном сгорании органических соединений.
Концентрация СО в городском воздухе больше, чем любого другого загрязнителя. Однако поскольку этот газ не имеет ни цвета, ни запаха, ни вкуса, наши органы чувств не в состоянии обнаружить его.
Источники образования СО.
Небольшие количества монооксида углерода природного происхождения образуются в результате вулканической деятельности и окисления метана в атмосфере. Эта реакционная цепь пока е полностью не установлена, но, по-видимому, окисление осуществляется с помощью ОН– радикалов. Исходным веществом для образования этих радикалов служит тропосферный озон, который под действием ультрафиолетового излучения с длиной менее 310 нм выделяет возбужденный кислород О(1D)
Этот возбужденный кислород в тропосфере водяными парами образует радикалы ОН–.
Радикалы ОН– окисляют метан в многостадийном процессе, где заключительной стадией является образование СО, который, видимо с помощью других радикалов ОН–, может превращаться в СО2.
Самый
крупный антропогенный источник оксида
углерода – автотранспорт,
т.к. в
большинстве
городов свыше 90 % СО попадает в воздух
вследствие неполного сгорания углерода
в моторном топливе по реакции: 2С+О3
= 2СО. Полное сгорание дает в качестве
конечного продукта диоксид углерода:
С + О2
= СО2.
Это происходит потому, что у двигателей
внутреннего сгорания оптимальные
условия окисления топлива создаются
только при выходе на определенный
рабочий режим. Как
правило, это соответствует 3/4 общей
мощности двигателя; напротив, максимальные
выбросы СО происходят на холостом ходу.
Другой источник оксида углерода – табачный дым, с которым сталкиваются не только курильщики, но и их ближайшее окружение. Доказано, что курильщик поглощает вдвое больше оксида углерода по сравнению с некурящим.
На горожанина-курильщика, особенно в закрытых помещениях, приходится двойная нагрузка: с одной стороны, действие СО, образующегося в результате выброса промышленными предприятиями и транспортом, с другой – СО, содержащегося в табачном дыме. В то время как у курильщиков – промышленных рабочих в крови обнаружено в среднем 5 % Hb∙СО, у некурящих рабочих содержание Hb∙СО не превышало 1,5%.
Токсичность.
Монооксид углерода представляет опасность для человека прежде всего потому, что он может связываться с гемоглобином крови, а также тем, что он участвует в образовании смога. Кроме того, СО может образовывать высокотоксичные соединения – карбонилы, но пока не установлено, в какой степени реализуются в природе необходимые для этого условия.
Карбонилы металлов – химические соединения, координационные комплексы монооксида углерода СО с переходными металлами общей формулой Mem(CO)n, например, карбонил железа – Fe(CO)5. Они весьма летучи, чрезвычайно токсичны, хорошо растворимы в органических растворителях, но, как правило, плохо растворимы в воде.
СО образует стойкое соединение с гемоглобином, пигментом крови, который отвечает за транспортировку кислорода к тканям организма. Вдыхание оксида углерода блокирует поступление кислорода в кровь, что приводит к кислородному голоданию тканей и (в зависимости от концентрации) вызывает головную боль, головокружение, тошноту, шум в ушах, обморок, паралич дыхательных путей и смерть.
Высокие концентрации СО, возникающие в воздухе, загрязненном автомобильными выхлопами в часы пик или при погоде, способствующей смогу, особенно опасны для людей, страдающих болезнями сердца и сосудов.
Связывание СО в природе и обеззараживание воздуха.
Непрерывное выделение СО наряду с его относительно длительным нахождением в атмосфере (несколько месяцев) должно было бы привести к большему увеличению концентрации СО в воздухе, чем это наблюдается фактически. Такому накоплению СО препятствуют высшие растения, водоросли и особенно микроорганизмы почвы. Высшие растения в определенной степени могут связывать СО с помощью аминокислоты серина, возможно также окисление СО в СО2. В почве некоторые микроорганизмы также либо частично переводят СО в органические соединения, либо окисляют его в СО2. Поэтому почва играет особую роль в удалении СО из атмосферы.
Диокси́д углеро́да (двуо́кись углеро́да, углеки́слый газ, окси́д углеро́да (IV), у́гольный ангидрид, углекислота́) – CO2, бесцветный газ со слегка кисловатым запахом и вкусом.
В отличие от монооксида углерода диоксид углерода образуется при полном окислении углеродсодержащего топлива. Атмосферный СО2 находится в состоянии постоянного обмена с почвой, водами и живыми организмами, в результате чего создается постоянный кругооборот его в природе.
Источники образования СО2.
Источниками СО2 служат вулканические извержения, выветривание содержащих углерод горных пород, микробиологический распад органических соединений над почвой и в почве, дыхание животных, растений и человека, лесные пожары и сжигание природного топлива. Выбросу СО2 противостоят процессы его фиксации из атмосферы: фотосинтез растений, растворение в морской воде, накопление соединений, богатых углеродом, и отложение богатых углеродом залежей горючих ископаемых.
Увеличение количества сжигаемого природного топлива с развитием индустриализации, особенно в течение последних 100–200 лет, привело к заметному повышению содержания СО2 в атмосфере.
Наряду со сжиганием природного топлива человек находит другой повод для вмешательства в природные «кладовые» углерода. В результате интенсивной обработки земли и создания новых пашен идет быстрое разрушение слоя гумуса в почве, и ускоренный переход углерода в атмосферу. К этому добавляется вырубка лесов, особенно ликвидация тропической растительности, которой издавна накопились огромные запасы углерода. Эти рубки в значительной мере способствуют нарушению равновесия между связыванием и выбросом углерода. Пока еще не удалось количественно установить вклад в увеличение концентрации в атмосфере в результате вырубки лесов и ускоренного разрушения гумуса.
Действие на организм человека.
В организме человека СО2 вместе с бикарбонатами образует важнейшую буферную систему крови. Повышение уровня парциального давления СО2 в крови увеличивает прочность связи кислорода с гемоглобином. Воздействуя на центры головного мозга, СО2 участвует регуляции дыхания и кровообращения. В больших концентрациях СО2 токсичен, вызывает гипоксию (кислородное голодание). Длительное вдыхание СО2 (до нескольких суток) вызывает головную боль, тошноту. Опасная концентрация СО2 (1,5–3 % в воздухе) с одновременным снижением кислорода обычно наблюдается в плохо вентилируемых помещениях.
Диоксид углерода в атмосфере.
Попавший в атмосферу СО2 остается в ней в среднем 2 до 5 лет. За это время СО2 повсеместно распространяется по всей земной поверхности, входя в состав атмосферы. Влияние СО2 выражается не только в токсическом действии на живые организмы, но и в способности поглощать инфракрасные лучи. При нагревании земной поверхности солнечными лучами часть тепла в виде инфракрасного излучения отдается обратно в мировое пространство. Это возвращаемое тепло частично перехватывается газами, поглощающими инфракрасное излучение, которые в результате нагреваются. Если это явление происходит в тропосфере, то с ростом температуры могут происходить климатические изменения («парниковый эффект»). Одна из основных проблем нашего времени состоит в том, чтобы определить масштабы и временные рамки климатических изменений в результате накопления тепла за счет СО2. До сих пор неясно, в какой степени климатические изменения связаны с поглощением инфракрасного излучения в атмосфере.
Согласно расчетам при удвоении содержания СО2 в атмосфере среднее глобальное увеличение температуры составляет 0,8–2,9 °С. В тропиках потепление меньше среднего глобального, в полярных зонах – больше.
Измеренные температурные изменения в тропосфере еще ничего не говорят о климатических изменениях. Многолетние наблюдения естественных колебаний температуры в тропосфере, в первую очередь над областями вулканических извержений, показывают, что изменения температуры на десятые доли градуса не влияют на климат. Предполагают, что изменение климата наступает только при изменении температуры более чем на 0,8 °С. При удвоении содержания СО2 в тропосфере изменение климата с повышением температуры становится вполне вероятным, если не происходит никаких компенсирующих процессов, как, например, усиленное поглощение и рассеяние излучения в стратосфере из-за загрязнений в виде пыли и аэрозолей.
Возможные климатические изменения при среднем подъеме температуры на 2 °С. При этом климатические пояса Земли сдвигаются к полюсам. В результате замерзающие порты Северной Европы, Северной Америки и Северной Азии освобождаются от льдов, одновременно происходит смещение субтропических засушливых зон в важнейшие плодородные области. Это сильно скажется на продовольственном положении населения планеты. Внушает опасение возможное снижение урожая кукурузы в США на 20 % и урожая пшеницы на 10 %. В Казахстане урожай пшеницы может понизиться даже на 20 %. Напротив, в тропических районах возможно увеличение сбора риса на 12–16 %.
Другая проблема заключается в том, что повышение температуры приведет к расплавлению ледяных шапок на полюсах. Таяние арктических льдов не будет столь уж интенсивным, поскольку там существует равновесие между плавающими льдами и водой. Иное положение создается в Антарктиде, где основная часть ледового щита покоится на твердом основании. При таянии этого ледового щита или сползании его в океан возможен подъем уровня воды на несколько метров. В этом случае вода покроет около 2 % общей площади США с населением 12 млн. человек. В Германии будут затоплены около 16 % территории Шлезвиг-Гольштейна, Нижней Саксонии, Гамбурга и Бремена с населением 2 млн. человек.
