
- •1.1 Расчет напряжений растяжения………………….. …..…8
- •1.2 Расчёт изгибающих моментов………………...……… ...13
- •4. Крутильные колебания роторов гтд………...………………..90
- •8.3.2. Планетарные редукторы………………………………..….138
- •8.5.1 Зубчатые цилиндрические и конические колеса……......…146
- •8.6. Измерители крутящего момента……......…..….…....156
- •9.1.1. Конструкция нерегулируемых дозвуковых выходных устройств………………………………………………………………...….......172
- •Введение
- •1. Расчёт лопаток компрессоров и турбин на прочность
- •1.1 Расчет напряжений растяжения
- •1.2 Расчёт изгибающих моментов
- •1.2.1 Определение изгибающих моментов от действия центробежных сил
- •1.2.2 Определение изгибающих моментов от центробежных сил методом конечных разностей
- •1..2.3. Расчёт изгибающих моментов в лопатках от действия газовых сил
- •1.3. Определение напряжений изгиба, суммарных напряжений и запасов прочности
- •1.4. Расчет на прочность замков крепления рабочих лопаток
- •1.4.1. Расчёт крепления лопатки типа «ласточкин хвост»
- •1.4.2 Расчёт крепления лопатки замком типа «ёлочка»
- •1.5. Контрольные вопросы
- •2. Колебание лопаток
- •2.1 Свободные колебания стержня постоянного поперечного сечения
- •2.2. Расчет первой собственной частоты колебаний лопатки переменного сечения
- •2.3. Определение частоты колебания лопатки в поле центробежных сил
- •2.4. Резонансные режимы и способы борьбы с опасными колебаниями
- •2.5 Контрольные вопросы
- •3. Критические скорости вращения роторов
- •3.1. Расчет критической скорости вращения невесомого вала с диском
- •3.2 Устойчивость быстровращающихся гладких валов
- •3.3. Критические скорости вращения реальных роторов
- •3.4. Влияние гироскопического момента на критические скорости вращеня
- •3.4.1 Расчет критической скорости вращения ротора с учётом гироскопического момента
- •3.5. Расчет крических скоростей вращения многодисковых роторов
- •3.6. Приведение сложных изгибных систем к эквивалентным
- •3.7. Контрольные вопросы
- •4. Крутильные колебания роторов гтд
- •4.1. Свободные крутильные колебания двухмассовой системы
- •4.2. Свободные крутильные колебания многомассовых систем
- •4.3. Приведение реальной крутильной системы к эквивалентной расчетной
- •4.4. Вынуждающие моменты и резонанс
- •4.5. Контрольные вопросы
- •5.Вибрационные перегрузки двигателей
- •5.1. Балансировка роторов гтд
- •5.2. Контрольные вопросы
- •6. Расчёт на прочность дисков роторов гтд
- •6.2 Расчет равнопрочного диска
- •6.3. Расчет на прочность вращающегося диска произвольного профиля
- •6.4. Контрольные вопросы
- •7. Колебания дисков
- •7.1 Контрольные вопросы
- •8. Редукторы гтд
- •8.1. Требование к редукторам
- •8.2. Классификация редукторов
- •8.3. Редукторы для привода одиночного винта
- •8.3.1 Простые редукторы
- •8.3.2. Планетарные редукторы
- •8.3.3. Двухступенчатые редукторы для привода одиночного винта
- •8.3.4. Замкнутые дифференциальные редукторы для привода одиночного винта
- •8.4. Редукторы для привода двух соосных винтов
- •8.5. Конструкция редукторов гтд
- •8.5.1 Зубчатые цилиндрические и конические колеса
- •8.5.2. Водила планетарных передач
- •8.5.3. Корпусы редукторов
- •8.5.4. Валы и их опоры
- •8.5.5. Применяемые материалы
- •8.6. Измерители крутящего момента
- •Контрольные вопросы
- •9. Выходные и ревеверсивные устройства
- •9.1.1. Конструкция нерегулируемых дозвуковых выходных устройств
- •9.3. Сверзвуковые регулируемые выходные устройства
- •9.4. Устройства для реверса и девиации тяги
- •9.5. Методы снижения шума
- •9.5.1 Шумоглушащие сопла
- •9.5.2 Снижение шума компрессора
- •9.5.3 Аэродромные глушители шума
- •Глушители шума выхлопа двигателя
- •Глушители шума на входе в двигатель
- •9.6. Контрольные вопросы
- •Заключение
- •Библиографический список
- •660014, Г. Красноярск, просп. Им. Газ. «Красноярский рабочий»,31
- •660028 Г. Красноярск . Ул. Л Кецховели, 75а-223.
8.5. Конструкция редукторов гтд
8.5.1 Зубчатые цилиндрические и конические колеса
Цилиндрические передачи нашли широкое применение в конструкции всех ступеней многоступенчатых авиационных редукторов. В большинстве выполненных конструкций это прямозубые передачи.
Высоконагруженные передачи имеют угол зацепления atw, превышающий 20°, что увеличивает толщину масляной пленки в зоне контакта зубьев, изгибную и контактную прочность, стойкость против заедания зубьев. Изготовление зубчатых колес таких передач идет с применением исходного производящего контура (ИПК) с профильными углами = 23; 25; 28°, а также смещения инструмента при нарезании зубчатых колес.
Применение ИПК с = 18° и специально подобранного смещения режущего инструмента позволяет получить передачи с коэффициентом перекрытия еа = 2,05 в широком диапазоне изменения числа зубьев 25 < z < 65. Такие передачи испытывают небольшие вибрационные нагрузки, что значительно увеличивает их работоспособность.
Передаточное отношение цилиндрических передач обычно не превышает 4. При этом в выполненных конструкциях до 50 % зубчатых колес внешнего зацепления имеет число зубьев z = = 25 ... 45. У колес внутреннего зацепления z = 81 ... 127. Величина модуля т варьируется в пределах 2,25 ... 8, но чаще всего m = 3 ... 5.
Наиболее
нагруженными являются зубчатые колеса
последних ступеней редукторов
вертолетных ГТД, работающие при окружных
скоростях
=
3 ... 20
м/с, с наработкой за ресурс 5 (107
... 108)
циклов нагружения. Наименее нагруженными
являются зубчатые колеса высокоскоростных
передач редукторов ТВД и вертолетных
ГТД, работающие при окружных скоростях
40
... 90 м/с, с наработкой за ресурс 109
... 1010
циклов нагружения.
Многие
конструктивные особенности зубчатых
колес связаны с необходимостью,
обеспечить равномерное распределение
нагрузки по ширине зубчатого венца.
Так, например, величина относительной
ширины зубчатого венца, оцениваемая
коэффициентом
(рис.8.14), определяет величину закручивания
зубчатого венца под действием усилия
в зацеплении.
Рис.8.14. Зубчатое колесо цилиндрической передачи
Как
показывают исследования, при большой
ширине зубчатого венца его закручивание
приводит к значительному снижению
нагрузки на зуб в сечениях венца,
удаленных от полотна зубчатого колеса,
и росту нагрузки в сечениях венца,
примыкающих к полотну. Поэтому зубчатые
колеса авиационных редукторов имеют
узкий венец, и в выполненных конструкциях
=
0,08 ... 0,88, а отношение
,
определяющее величину контактных
напряжений, лежит в пределах 0,08 ... 0,45.
Толщина
обода зубчатого колеса, влияющая на
изгибную жесткость зубьев и жесткость
венца, оценивается коэффициентом
,
величина которого меняется в пределах
(2,3 ... 6,8). Жесткость зубчатого венца
зависит также и от толщины полотна
.
Обычно относительная толщина полотна
оценивается коэффициентом
,
равным 0,1 ... 0,5. Размеры ступицы
колеса
определяются коэффициентом
,
величина
которого
в выполненных конструкциях меняется
в пределах 0,1 ... 2,3.
Способ размещения зубчатых венцов относительно опор влияет на величину перекоса зубчатых венцов сопряженных колес и на равномерность распределения нагрузки. В этом смысле расположение сопряженных колес посередине между опорами наиболее благоприятно. Большая неравномерность нагрузки связана со схемой консольного расположения зубчатых колес при одностороннем подводе крутящего момента. Гораздо меньшая неравномерность получается в конструкции с консольным расположением зубчатых колес и приложением крутящего момента с разных сторон. Все сказанное не относится к центральным колесам внешнего зацепления планетарных передач, так как при числе сателлитов >3 даже консольное расположение этих колес не приводит к перекосу зубчатого венца.
Если нет технологических ограничений, то зубчатые колеса предпочтительнее изготовлять как единое целое с полотном, ступицей и валом, так как составное колесо нуждается в элементах центровки и соединения составляющих его частей (рис.8.15.).
Рис.8.15. Конструкция зубчатых колес: а — составное колесо с полотном коробчатой конструкции; б — центрирование колеса с помощью кольца и центрирующего пояска; д — центрирование колеса с помощью конических разрезных колец; г и в — передача крутящего момента штифтами и призонными болтами; е — фиксация плавающего зубчатого венца разрезными упругими кольцами; / — кольцо; 2 — центрирующий поясок; 3 — штифт; 4 — призонный болт; 5 — плавающий зубчатый венец; 6 — сателлит: 7 — водило: 8 — ось сателлита
Все это утяжеляет и усложняет конструкцию колес. При небольших размерах зубчатого колеса оно имеет плоское полотно постоянной толщины. В колесах большого размера полотно обычно представляет собой коническую оболочку переменной толщины с утонением к ободу. Это требуется для увеличения осевой жесткости колеса (в особенности косозубого) и увеличения частоты собственных колебаний для предотвращения опасных низкочастотных резонансов при колебаниях колес. Иногда такие колеса делают с полотном коробчатого сечения, т.е., из двух конических оболочек (см. рис.8.15, а).
Сопряжение обода с полотном делают с плавным переходом радиусом, соизмеримым с шириной обода колеса. Широкий обод колеса обычно выполняется с утолщениями по торцам, служащими для уменьшения поводки зубчатого венца при химико-термической обработке и уменьшения деформации зуба при нагружении (см. рис.8.15,д).
В случае необходимости зубчатые колеса делают составными. При этом особое внимание уделяется оформлению фланцевых соединений составного колеса. Для косозубых колес стык фланцев осуществляется так, чтобы осевая нагрузка, возникающая в зацеплении, поджимала фланцы друг к другу.
Взаимное центрирование колеса и вала обычно осуществляется по цилиндрическим посадочным пояскам (см. рис.8.15,б) или по двум конусным разрезным втулкам (см. рис.8.15,д).
Крутящий момент во фланцевом соединении может быть передан за счет трения, возникающего в стыке при затяжке болтов. Болтовое соединение часто дополняется штифтами или полыми призонными втулками, посаженными в отверстия с натягом. В этом случае крутящий момент во фланцевом соединении передается за счет среза и смятия штифтов или втулок (рис.8.15,в). Применяются фланцевые соединения с призонными болтами. Посадочная поверхность болта и опорная поверхность его головки шлифуются, место перехода тела болта в головку имеет поднутрение, исключающее ослабление этого места из-за возможных дефектов шлифовки (рис.8.15,г). Затяжка гаек в болтовом соединении производится с определенным крутящим моментом или сопровождается замером вытяжки болтов для исключения возможности появления больших растягивающих нагрузок, а также для создания определенной силы в стыке фланцев.
В планетарных передачах часто используются зубчатые колеса внутреннего зацепления с плавающими венцами, т. е. венцами, не имеющими жесткой связи с полотном колеса. Передача крутящего момента и осевая фиксация между зубчатым венцом и остальными элементами составного колеса осуществляется шлицами и разрезными упругими кольцами (рис.8.15,е). Такое соединение благодаря наличию зазоров в шлицах позволяет зубчатому венцу самоустанавливаться и центрироваться по сателлитам, что приводит к более равномерному распределению нагрузки по зубьям сателлитов. Сателлиты планетарных ступеней редуктора могут иметь форму обычного зубчатого колеса с ободом, полотном и валом. При малых размерах сателлитов их конструкция может быть упрощена: они состоят из зубчатого венца и цилиндрического тела колеса с центральной расточкой, служащей беговой дорожкой для роликов подшипника качения. В этом случае удается в ограниченном объеме разместить подшипники большей грузоподъемности. Сателлиты такой конструкции цементируются кругом, зубья и беговые дорожки подшипников шлифуются (рис. 8.15,е).
Поскольку напряженность зубьев центральных колес внешнего и внутреннего зацепления, находящихся в контакте с сателлитами, различна, это должно учитываться при выборе ширины зубчатых венцов. Зубья колес внутреннего зацепления, при прочих равных условиях, испытывают меньшие контактные и изгибные напряжения, чем зубья колес внешнего зацепления из-за большего приведенного радиуса кривизны рабочих поверхностей зуба. Поэтому ширина зубчатого венца центрального колеса внутреннего зацепления может быть уменьшена при условии, что это не ухудшит работоспособности зубьев сателлита (рис.8.15,б,е).
Конические зубчатые передачи получили применение в высокоскоростных ступенях редукторов вертолетных ГТД, а также в приводах агрегатов этих редукторов и агрегатов двигателя. Силовые передачи обычно имеют конические колеса с криволинейными (так называемыми круговыми) зубьями и работают с окружными скоростями до 100 м/с и выше. Ширина зубчатого венца таких колес лежит в пределах (0,25 ... 0,37) l, где l — длина образующей делительного конуса колеса. Конические передачи чрезвычайно чувствительны к взаимному положению зубчатых венцов колес. Поэтому важно обеспечить стабильность этого положения, как при сборке, так и в процессе работы передачи. Основным критерием правильности сборки и эксплуатации конической передачи является правильное расположение и форма пятна контакта в зацеплении. Такое пятно овальной формы, удаленное от торцов, вершины и корневого сечения зуба, означает равномерное распределение нагрузки по длине и высоте зуба. В связи с этим особое внимание уделяется выбору местоположения опор конической передачи. При размещении зубчатого венца между опорами влияние прогиба вала и деформация опор будут оказывать минимальное влияние на перекос зубьев и поэтому такая схема является предпочтительной. При необходимости консольного расположения зубчатого венца стараются уменьшить величину вылета консоли, увеличить жесткость вала и опор. Обычно размер вылета консоли составляет около трети расстояния между опорами.
Упорные подшипники размещают как можно ближе к зубчатому колесу для уменьшения влияния тепловых деформаций на точность зацепления. Образующая полотна конической формы обычно направляется под углом к оси колеса, определяемым направлением результирующей осевой и радиальной составляющих силы в зацеплении. В этом случае можно избежать изгиба полотна колеса и уменьшить осевое смещение зубчатого венца под нагрузкой.
Высоконагруженные цилиндрические и конические зубчатые колеса имеют поднутренное основание зуба, полученное за счет применения сложного исходного производящего контура (рис.8.16).
Рис.8.16. Профиль зуба с поднутренным основанием: а и б— величины, характеризующие модификацию зуба; в— место указания на чертеже толщины и твердости цементированного слоя; г — место испытания твердости цементированного слоя; Rз — радиус поднутрения
Такое поднутрение используется для увеличения прочности и надежности зубьев, так как в этом случае шлифованию подвергается только рабочий эвольвентный участок профиля. Это исключает возможность прижога в корневой части зуба. Поднутрение выполняется с достаточно большим радиусом (Rmin = 0,25m), что существенно снижает концентрацию напряжений в корне зуба. Толщина вершины зуба Sa = (0,3 ... 0,4)m.
Высоконагруженные передачи изготовляются по 4-й степени точности по нормам плавности и контакта (ГОСТ 1643—81), а средненагруженные — со степенью точности 6—5—5 В и 7— 6—6 В. Дальнейшее увеличение точности изготовления зубчатых колес часто оказывается нецелесообразным, так как контакт сопряженных зубьев обеспечивается за счет деформации зубьев, выбирающей погрешности изготовления.