
- •1 Схема замещения асинхронного двигателя. Пояснение схемы замещения физической сути реальной машины.
- •2. Отримання рівняння i2(s) зі схеми заміщення ад. Графічне зображення залежності. Отримання виразів максимального і граничного струмів.
- •3. Виведення рівняння m(s) асинхронного двигуна та отримання формул велични Mk Sk. Формула Клосса.
- •4. Графическое изображение механической характеристики ад в системах координат m(s) и . Анализ ее характерных точек.
- •5. Пояснення суттєво нелінійної форми механічної характеристики ад.
- •6. Построение естественной механической характеристики ад с фазным ротором.
- •8. Штучні статичні характеристики ад при введенні в коло статора додаткового активного опору. Необхідні пояснення з допомогою відповідних рівнянь.
- •10. Искусственные статические характеристики ад при изменении напряжения на статоре. Необходимые пояснения с помощью уравнений.
- •12) Статичні характеристики ад при перемиканні числа пар полюсі». Принцип перемикання.
- •14)Статические характеристики ад при изменении частоты и напряжения питания по закону . Необходимые пояснения с помощью соответствующих уравнений
- •15. Статичні х-ки ад при зміненні частоти і напруги живлення за законом
- •16) Точный метод расчета ступеней пускового сопротивления в роторе ад.
- •17) Гальмування противмикання ад: ознака, графична илюстрация зупинки механізму та опускання вантажу, способи перемекання двигунив.
- •18 Генераторне гальмування ад: ознака, графічна ілюстрація зниження швидкості двигуна, способи впливу на електричну машину.
- •20. Динамічне гальмування ад: Ознака, схеми включення машини, графічна ілюстрація зупинки механізму та спускання вантажу.
- •21. Конденсаторне гальмування ад: схема включення, графічна ілюстрація зупинки механізму.
- •22) Виведення рівняним s(I) асинхронного двигуна для режиму динамічного
- •23Виведення рівняння I`2(s) асинхронного двигуна для режиму динамічного гальмування з урахуванням кривої намагнічування.
- •24)Выведение уравнения м(s) ад для режима динамического торможения с учётом кривой намагничивания
- •2 5. Порядок побудови статичних х-к ад в режимі дт за допомогою рівнянь і кривої намагнічування .
- •28 Визначення еквівалентного за намагнічуючою силою змінного струму
- •I 1 через струм збудження I n асинхронного двигуна в режимі динамічного гальмування.
- •29)Динамические свойства асинхронного электромеханического преобразователя
- •3 0. Виведення рівняння кутової х-ки синхронного двигуна з допомогою векторної діаграми.
- •31. Вплив форсування збудження сд на навантажувальну спроможність машини. Приклади застосування.
- •32) Пояснення за допомогою вд сд впливу струму збудження на коефіцієнт потужності cosfi машини. Приклади застосування.
- •33 Пускові властивості сд за схемою з глухо підключеним збуджувачем. Схема, принцип дії, достоїнства та недоліки.
- •34)Пусковые свойства сд по схеме с реле частоты. Схема, принцип действия, достоинства и недостатки
- •85. Динамічні характеристики синхронного електромагнітного перетворювача.
29)Динамические свойства асинхронного электромеханического преобразователя
Возьмём упрощенную
формулу Клосса
Для рабочего участка механической характеристики, где S<Sкр уравнение, связывающее момент и скорость АД, имеет вид:
,
или
,
где
- модуль жесткости линеаризированной
механической характеристики, и
-
это электромагнитная постоянная времени,
находящаяся в пределах 0,06-0,006 С
Это значит, что в окрестностях точки статистического равновесия асинхронный ЭМП представляется апериодическим звеном. Структурная схема асинхронного ЭМП, линеаризованного в пределах рабочего участка статической механической характеристики выглядит так:
Передаточная
функция динамической жесткости в
соответствии с этой схемой имеет вид:
Сравнивая это выражение с аналогичным выражением ДНВ и структурные схемы, можно убедиться в их идентичности. Таким образом, в пределах рабочего участка механической характеристики динамические свойства АД аналогичны свойствам ДНВ. Для АД частота f1 является управляющим воздействием, аналогичным напряжению Uя, приложенному к якорной цепи ДНВ.
3 0. Виведення рівняння кутової х-ки синхронного двигуна з допомогою векторної діаграми.
Обратимся к упрощенной векторной диаграмме СД. Будем пренебрегать потерями в активном сопротивлении статора.
из треугABC:
подставим в перове равенство
Учитывая, что
тогда
Введем
.
Известно, что
Можно записать в
виде
В явнополюсной машине для практических расчетов можно пренебречь реактивным моментом и пользоваться этой формулой
31. Вплив форсування збудження сд на навантажувальну спроможність машини. Приклади застосування.
Динамические механические характеристики, соответствующие даже сравнительно медленным изменениям момента двигателя, могут существенно отличаться от статических.
Важным достоинством синхронного двигателя является возможность регулирования реактивной мощности посредством изменения величины тока возбуждения Iв. При относительно небольшом токе возбуждения ток статора I1 отстает от приложенного напряжения на угол φ1 и из сети потребляется реактивная мощность. Увеличивая ток возбуждения можно добиться φ1=0, что соответствует потреблению из сети только активной мощности. Дальнейшее увеличение тока возбуждения Iв приводит к отдаче реактивной мощности в сеть (рис.5.1в).
Увеличение тока возбуждения, а значит и ЭДС Е приводит к увеличению момента машины, а при неизменном моменте - к уменьшению угла Θэл. Как следует из выражения для угловой характеристики синхронной машины, увеличение тока возбуждения приводит к увеличению перегрузочной способности синхронного двигателя. Поэтому форсирование возбуждения при бросках нагрузки позволяет повысить устойчивость работы двигателя в этих режимах.