- •Лимфатические капилляры. Особенности строения и функции
- •2. Виды регенерации
- •1. Зубы. Строение и источник развития эмали.
- •Гистогенез
- •2. Классификация и характеристика иммуноцитов.
- •1. Глаз
- •Гладкая мышечная ткань
- •2.Общая гистология. Учение о гистологических тканях. Ткань, как один из уровней организации живого
- •1. Орган равновесия. Строение, развитие, функции
- •Взаимодействие структур клетки в процессе синтеза строительных белков
- •2.Зернистые лейкоциты (агранулоциты), их разновидности
- •3. Образование, строение и функции зародышевых оболочек и провизорных органов у человека.
- •3.Ядроего значение в жизнедеятельности кл
- •1. Характеристика спинномозговых ганглиев и нервов.
- •3. Гистогенез.
- •3. Критические периоды развития:
- •2. Покровный эпителий.
- •3. 3 Неделя эмбр.Дифференцировка зародышевых листков. Образование комплекса осевых органов у человека на 2ой и 3-ей неделях развития. Мезенхима.
- •I. Центральные регуляторные образования эндокринной системы
- •II. Периферические эндокринные железы
- •III. Органы, объединяющие эндокринные и неэндокринные функции
- •1. Ротовая полость
- •2. Виды т-лимфоцитов,
- •3.Репродукция клеток и ее биологическое значение
- •1. Поджелудочная железа. Развитие. Строение экзо- и эндокринной части из гистофизиология. Регенерация. Возрастные изменения.
- •2. Поперечно-полосатая скелетная мышечная ткань.
- •Гладкая мышечная ткань.
- •1. Воздухоносные пути
3. 3 Неделя эмбр.Дифференцировка зародышевых листков. Образование комплекса осевых органов у человека на 2ой и 3-ей неделях развития. Мезенхима.
Из зародышевых листков образуется: I. ЭКТОДЕРМА: 1)эпидермис кожи и его производные (сальные, потовые, молочные железы, ногти, волосы), нервная ткань, нейросенсорные и сенцоэпителиальные клетки органов чувств, эпителий ротовой полости и его производные ( слюнные железы, эмаль зуба, эпителий аденогипофиза), эпителий и железы анального отдела прямой кишки; II. МЕЗОДЕРМА: 1) дерматомы - собственно кожа (дерма кожи); 2) миотомы - скелетная мускулатура; 3) склеротомы - осевой скелет (кости, хрящи); 4) нефрогонотомы (сегментные ножки) - эпителий мочеполовой системы; 5) спланхнотомы - эпителий серозных покровов (плевра, брюшина, околосердечная сумка), гонады, миокард, корковая часть надпочечников; 6) нефрогенная ткань - эпителий нефронов почек. III. ЭНТОДЕРМА: 1) часть энтодермы, образованная из прехордальной пластинки - эпителий и железы пищевода и дыхательной системы; 2) часть энтодермы, образованная из гипобласта - эпителий и железы всей пищеварительной трубки (включая печень и поджелудочную железу); участвует при образовании переходного эпителия мочевого пузыря (аллантоис). IV. МЕЗЕНХИМА: 1) все виды соединительной ткани (кровь и лимфа, рыхлая и плотная волокнистая соед.ткань, соед.ткань со специальными свойствами, костные и хрящевые ткани); 2) гладкая мышечная ткань; 3) эндокард.
Билет 34.
1. Надпочечники:
Снаружи надпочечники покрыты соединительнотканной капсулой.В корковом веществе надпочечников образуется комплекс стероидных гормонов, которые регулируют обмен углеводов, состав ионов во внутренней среде организма и половые функции — глюкокортикоиды, минералокортикоиды, половые гормоны. Функция коры, кроме клубочковой зоны, контролируется адренокортикотропным гормоном гипофиза (АКТГ) и гормонами почек — ренин-ангиотензиновой системой. В мозговом веществе продуцируются катехоламины, которые влияют на быстроту сердечных сокращений, сокращение гладких мышц и метаболизм углеводов и липидов.
К аденогипофиззависимым эндокринным железам и структурам относятся щитовидная железа (фолликулярные эндокриноциты — тироциты), надпочечники (пучковая и сетчатая зоны коркового вещества) и гонады, деятельность которых регулируется гормонами аденогипофиза.
К аденогипофизнезависимым эндокринным железам и структурам относятся паращитовидные железы, кальцитониноциты щитовидной железы, клубочковая зона коры и мозговое вещество надпочечников, эндокриноциты островков поджелудочной железы, одиночные гормонпродуцирующие клетки.
2. Костные ткани
Костные ткани – это специализированный тип соединительной ткани с высокой минерализацией межклеточного органического вещества, содержащего около 70% неорг.соеденений, главным образом кальция.
В костной ткани обнаружено более 30 микроэлементов. В костной ткани обнаружено более 30 микроэлементов ( медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме.
Органическое вещество- матрикс костной ткани- представлено в основном белками коллагенового типа и липидами.
Из всех разновидностей соединительных тканей костная ткань обладает наиболее выраженными опорной, механической, защитной функциями для внутренних органов, а также является депо солей кальция, фосфора и др.
Существует два основных стволовые полтипа костной ткани: ретикулофиброзная и пластинчатая. Эти разновидности костной ткани различаются по структурным и физическим свойствам. К костной ткани относятся также дентин и цемент зуба.
В процессе развития костной ткани образуется костный дифферон: стволовые, полустволовые клетки, остеобласты, остеоциты. Вторым структурным элементом являются остеокласты, развивающие из стволовых клеток крови.
Стволовые и полустволовые остеогенные клетки морфологически не идентифицируются.
Остеобласты, или остеобластоциты- это молодые клетки, создающие костную ткань. Они встречаются только в глубоких слоях надкостницы. Они способны к пролиферации. Форма остеобластов бывает различной: кубической, пирамидальной или угловатой. Размер их тела около 15-20 мкм. Ядро округлой или овальной формы.
Остеоциты – это преобладающие по количеству дефинитивные клетки костной ткани, утратившие способность к делению. Имеют отростчатую форму, компактно, относительно крупное ядро слабобазофильную цитоплазму. Органеллы развиты слабо. Костные клетки лежат в костных полостях, или лакунах.
Остеокласты- эти клетки гематогенной природы способные разрушить обызвествленный хрящ и кость. Диаметр их достигает 90 мкм и более, и они содержат от 3 до нескольких десятков ядер. Остеокласты располагаются обычно на поверхности костных перекладин. Остеокласты выделяют СО в окружающую среду. Функции остеобластов и остеокластов взаимосвязаны и коррелируют с участием гормонов, простагландинов, функциональной нагрузкой, витаминами и др.
Межклеточное вещество состоит из основного аморфного вещества, импрегнированного неорганическими солями, в котором располагаются коллагеновые волокна, образующие небольшие пучки. Они содержат в основном белок- коллаген 1 и 5 типов. Волокна могут иметь беспорядочное или строго ориентированное направление.
Прямой остеогистогенез. Способ остеогенеза характерен для развития грубоволокнистой ткани при образовании плоских костей, например покровных костей черепа
Надкостница или переост.В надкостнице различают два слоя:наружный(волокнистый) и внутренний(клеточный).Наружный сой образован-волокнистой соед.тканью. Внутренний слой содержит остеогенные камбиальные клетки, преостеобласты и остебласты различной степени дифференцировке.
Остеон является структурными единицами компактного вещества трубчатой кости(диафиза).Они представляют собой цилиндрические образования. Состоящих из костных пластинок,как бы вставленных друг в друга. Каждый остеон отграничен от соседних остеонов-спайной линией. В центральном канале остеона проходят кровеносные сосуды. В диафизе длиной кости остеоны расположены параллельно длинной оси.Каналы остеонов анвстомозируют друг с другом.такие каналы называют прободающими или питательными.Эндост –оболочка,покрывающая кость со стороны костномозговой полости.В эндосте различают осмиофильную линию на наружном крае минерализованного вещества кости;остеоидный слой,состоящий из аморфного вещества.колагенновых фибрилл и остиобластов.кровен.капиляров и нерв.окончаний;слоя
чешуевидных клеток.Толщина эндоста превышает 1-2мкм,но меньше чем у периоста.
3. Жизненный цикл клетки – это период существования клетки от момента её образования путём деления материнской клетки до её смерти. Важнейшим компонентом является митотический цикл.
Периоды:
- Интерфаза – подготовка к делению клетки.
- Митоз – деление клетки.
Интерфаза - подготовка к делению клетки.
- Пресинтетический (G1) – идёт рост образовавшейся клетки, синтез различных РНК и белков. Синтез ДНК не происходит. (12-24 часа). 2n2c (хромосом и ДНК).
- Синтетический (S) – синтез ДНК и редупликация хромосом. Синтез РНК и белка. (10 часов).
- Постсинтетический (G2) – синтез ДНК останавливается. Происходит синтез РНК, белков и накопление энергии. Ядро увеличивается в размере. Происходит его деление. (3-4 часа).
Способы деления клеток:
- Амитоз – прямое, простое деление клетки (неполноценное).
- Митоз – сложное, непрямое, полноценное деление клетки.
- Мейоз – сложное, непрямое, редукционное деление специализированных клеток репродуктивных органов.
Способы деления клеточных структур:
- Эндомитоз – увеличение числа хромосом кратное их набору.
- Политения – образование многонитчатых хромосом за счёт многократной репликации хромосом.
Митоз – сложное, непрямое, полноценное деление клетки.
- Профаза – хромосомы спирализуются, укорачиваются, приобретают вид нитей и ядро напоминает клубок нитей. Ядрышко начинает разрушаться. Ядерная оболочка частично лизируется. В цитоплазме уменьшается количество структур шероховатой ЭПС. Резко уменьшается число полисом. Центриоли клеточного центра расходятся к полюсам. Между ними микротрубочки образуют веретено деления, увеличивается вязкость цитоплазмы, её тургорт и поверхностное натяжение внутренней мембраны.
- Прометафаза – исчезает ядерная оболочка и ядрышко. Хромосомы в виде толстых нитей располагаются по экватору.
- Метафаза – заканчивается образование веретена деления. Хроматиновые нити прикрепляются одним концом к центриолям, а другим к центромерам хромосом. Хроматиды начинают отталкиваться друг от друга. Хромосомы подразделяются на две хроматиды. Остаются сцепленными в центре. Хромосомы выстраиваются по экватору, образуя материнскую звезду.
Анафаза – рвётся связь по центромере, сохраняются нити ахроматинового веретена и растягивают хроматиды к центриолям.
- Телофаза – происходят процессы обратные процессам профазы. Хромосомы десрирализуются, удлиняются, становятся тонкими. Формируется ядрышко, образуется ядерная мембрана, разрушается веретено деления, происходит цитокинез. Из материнской клетки образуются две дочерние.
Клеточный (жизненный) цикл
Клеточный (или жизненный) цикл клетки – время существования клетки от деления до следующего деления или от деления до смерти. Для разных типов клеток клеточный цикл различен.
В организме млекопитающих и человека различают следующие типы клеток, локализующиеся в разных тканях и органах:
1) часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки);
2) редко делящиеся клетки (клетки печени – гепатоциты);
3) неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и др.).
Жизненный цикл у этих клеточных типов различен.
Жизненный цикл у часто делящихся клеток – время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом.
Такой клеточный цикл подразделяется на два основных периода:
1) митоз (или период деления);
2) интерфазу (промежуток жизни клетки между двумя делениями).
Выделяют два основных способа размножения (репродукции) клеток.
1. Митоз (кариокенез) – непрямое деление клеток, присущее в основном соматическим клеткам.
2. Мейоз (редукционное деление) характерен только для половых клеток.
Имеются описания и третьего способа деления клеток – амитоза (или прямого деления), которое осуществляется путем перетяжки ядра и цитоплазмы с образованием двух дочерних клеток или одной двухядерной. Однако в настоящее время считают, что амитоз характерен для старых и дегенерирующих клеток и является отражением патологии клетки.
Указанные два способа деления клеток подразделяются на фазы или периоды.
Митоз подразделяется на четыре фазы:
1) профазу;
2) метафазу;
3) анафазу;
4) телофазу.
Профаза характеризуется морфологическими изменениями ядра и цитоплазмы.
В ядре происходят следующие преобразования:
1) конденсация хроматина и образование хромосом, состоящих из двух хроматид;
2) исчезновение ядрышка;
3) распад кариолеммы на отдельные пузырьки.
В цитоплазме происходят следующие изменения:
1) редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки;
2) формирование из микротрубочек веретена деления;
3) редукция зернистой ЭПС и также уменьшение числа свободных и прикрепленных рибосом.
В метафазе происходит следующее:
1) образование метафазной пластинки (или материнской звезды);
2) неполное обособление сестринских хроматид друг от друга.
Для анафазы характерно:
1) полное расхождение хроматид и образование двух равноценных дипольных наборов хромосом;
2) расхождение хромосомных наборов к полюсам митотического веретена и расхождение самих полюсов.
Для телофазы характерны:
1) деконденсация хромосом каждого хромосомного набора;
2) формирование из пузырьков ядерной оболочки;
3) цитотомия, (перетяжка двухядерной клетки на две дочерние самостоятельные клетки);
4) появление ядрышек в дочерних клетках.
Интерфазу подразделяют на три периода:
1) I – J1 (или пресинтетический период);
2) II – S (или синтетический);
3) III – J2 (или постсинтетический период).
В пресинтетическом периоде в клетке происходят следующие процессы:
1) усиленное формирование синтетического аппарата клетки – увеличение числа рибосом и различных видов РНК (транспортной, информационной, рибосомальной);
2) усиление синтеза белка, необходимого для роста клетки;
3) подготовка клетки к синтетическому периоду – синтез ферментов, необходимых для образования новых молекул ДНК.
Для синтетического периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.
Постсинтетический период характеризуется усиленным синтезом информационной РНК и всех клеточных белков, особенно тубулинов, необходимых для формирования веретена деления.
Клетки некоторых тканей (например, гепатоциты) по выходе из митоза вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение ряда лет, при этом не вступая в синтетический период. Только при определенных обстоятельствах (при повреждении или удалении части печени) они вступают в нормальный клеточный цикл (или в синтетический период), синтезируя ДНК, а затем митотически делятся. Жизненный цикл таких редко делящихся клеток можно представить следующим образом:
1) митоз;
2) J1-период;
3) J0-период;
4) S-период;
5) J2-период.
Большинство клеток нервной ткани, особенно нейроны центральной нервной системы, по выходе из митоза еще в эмбриональном периоде в дальнейшем не делятся.
Жизненный цикл таких клеток состоит из следующих периодов:
1) митоза – I период;
2) роста – II период;
3) длительного функционирования – III период;
4) старения – IV период;
5) смерти – V период.
На протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в состав разнообразных клеточных структур, постепенно заменяются новыми, т. е. клетки постепенно обновляются. На протяжении жизненного цикла в цитоплазме неделящихся клеток накапливаются различные, прежде всего липидные включения, в частности липофусцин, рассматриваемый в настоящее время как пигмент старения.
Мейоз – способ деления клеток, при котором происходит уменьшение числа хромосом в дочерних клетках в 2 раза, характерен для половых клеток. В данном способе деления отсутствует редупликация ДНК.
Кроме митоза и мейоза, выделяется также эндорепродукция, не приводящая к увеличению количества клеток, но способствующая увеличению количества работающих структур и усилению функциональной способности клетки.
Для данного способа характерно, что после митоза клетки сначала вступают в J1-, а затем в S-период. Однако такие клетки после удвоения ДНК не вступают в J2-период, а затем в митоз. В результате этого количество ДНК становится увеличенным вдвое – клетка превращается в полиплоидную. Полиплоидные клетки могут вновь вступать в S-период, в результате чего они увеличивают свою плоидность.
В полиплоидных клетках увеличивается размер ядра и цитоплазмы, клетки становятся гипетрофированными. Некоторые полиплоидные клетки после редупликации ДНК вступают в митоз, однако он не заканчивается цитотомией, так как такие клетки становятся двухъядерными.
Таким образом, при эндорепродукции не происходит увеличения числа клеток, но увеличивается количество ДНК и органелл, следовательно, и функциональная способность полиплоидной клетки.
Способностью к эндорепродукции обладают не все клетки. Наиболее характерна эндорепродукция для печеночных клеток, особенно с увеличением возраста (например, в старости 80% гепатоцитов человека являются полиплоидными), а также для ацинозных клеток поджелудочной железы и эпителия мочевого пузыря.
Билет 35.
1. диффузная Эндокринная система — совокупность структур: органов, частей органов, отдельных клеток, секретирующих в кровь и лимфу гормоны.
Гормоны — это высокоактивные регуляторные факторы, оказывающие стимулирующее или угнетающее влияние преимущественно на основные функции организма: обмен веществ, соматический рост, репродуктивные функции.
Эндокринная система совместно с нервной системой осуществляет регуляцию и координацию функций организма. В состав эндокринной системы входят специализированные эндокринные железы, или железы внутренней секреции, лишенные выводных протоков, но обильно снабженные сосудами микроциркуляторного русла, в которые выделяются продукты секреции этих желез. Одиночные эндокринные клетки рассеяны по разным органам и тканям организма. Подавляющее большинство гормонов принадлежит к белкам (пептиды, олигопептиды, гликопептиды) и производным аминокислот, часть — к стероидам (половые гормоны и гормоны коры надпочечников).
Различают центральные и периферические отделы:
