
- •1. Типы электростанций и их особенности.
- •2. Тепловые конденсационные электростанции. Их типы и особенности.
- •3.Теплофикационные электростанции. Их типы и особенности.
- •4.Парогазовые установки.
- •5. Аэс. Их типы и особенности.
- •6. Виды гидравлических электростанций. Их типы и особенности.
- •1)Гэс с суточной регулировкой; 2)Недельное регулирование; 3)Годовое регулирование (сш гэс)
- •7. Гидроаккумулирующие электростанции.
- •8.Нетрадиционные и возобновляемые источники энергии
- •9) Режимы работы электростанций
- •10) Преимущества объединения энергосистем в Единую энергосистему
- •6. Позволяет повысить маневренность в энергосистемах и осуществлять взаимопомощь между оэс при авариях, при проведении плановых ремонтов, при маловодных годах на гэс.
- •11. Показатели суточных и годовых графиков нагрузок электростанций
- •12. Установленная мощность электростанций
- •13. Синхронные генераторы.
- •14. Гидрогенераторы
- •15.Турбогенераторы
- •17. Провода воздушных лэп. Их классификация и маркировка.
- •18)Кабели. Их классификация и маркировка
- •19. Изоляторы. Их классификация и маркировка.
- •20. Опоры воздушных лэп. Их классификация и маркировка.
- •21.Способы прокладки кабельных линий
- •22.Принцип работы трансформатора.
- •Автотрансформатор имеет повышенные токи короткого замыкания.
- •24. Конструкции трансформаторов
- •25. Измерительные трансформаторы
- •26.Трехфазное короткое замыкание
- •27. Гашение электрической дуги
- •1.Интенсивное дутье газо-паровой смеси в зоне дуги особенно в момент когда токи близки к 0.
- •2.Максимально возможное давление в области дуги в конце полупериода.
- •28. Выключатели высокого напряжения.
- •29. В масляных выключателях
- •1)Простота конструкции, 2)высокие отключающие способности
- •1)Большие габариты, 2)большой объём масла, 3)взрыво- и пожароопасность
- •30. Воздушные выключатели высокого напряжения
- •31. Вакуумные выключатели
- •32. Элегазовые выключатели.
- •33. Электромагнитные выключатели
- •34. Выключатель нагрузки
- •35. Разъединитель
- •36. Отделитель.
- •37. Короткозамыкатель
- •38. Электрические схемы электрических станций и подстанций
- •39. Схема электрических соединений ру с одной системой сборных шин.
- •40. Распределительные устройства с двумя системой сборных шин.
- •41.Схемы электрических соединений распределительных устройств блоков трансформатор – линия.
- •42. Схемы мостиков электрических соединений распределительных устройств.
- •43. Кольцевые схемы электрических соединений распределительных устройств.
- •44. Схема электрических соединений распределительных устройств с одной рабочей и обходной системой сборных шин.
- •45. Схема электрических соединений распределительных устройств с двумярабочими и обходной системой сборных шин.
- •46.Схема электрических соединений распределительных устройств с двумя системами сборных шин и тремя выключателями на 2 цепи.
- •47.Схема электрических соединений распределительных устройств с двумя системами сборных шин и четырьмя выключателями на 3 цепи.
- •48. Требования, предъявляемые к электрическим схемам станций и подстанций.
- •50. Схема электрических соединений ру тепловых конденсационных электростанций
- •51. Выбор и проверка выключателей напряжением выше 1000 в
- •52. Выбор и проверка предохранителей напряжением выше 1 кВ
- •53. Выбор сечений жил кабелей напряжением выше 1 кВ
- •56. Выбор трансформаторов тока и трансформаторов напряжения.
- •57. Проверка токоведущих устройств (токопроводов) на термическую и динамическую стойкость
- •58. Выбор предохранителей напряжением до 1000 в
- •59)Проверка автоматических выключателей напряжением до 1000 в
- •60) Выбор сечения проводов и кабелей напряжением до 1000 в по допустимому нагреву.
- •61)Выбор магистральных и распределительных шинопроводов по допустимому нагреву
- •62)Основные положения по расчету осветительных сетей
- •63) Расчет сечений линийраспределительных сетей по допустимой потере напряжения
- •65) Расчет заземляющих устройств
- •66)Линии постоянного тока
12. Установленная мощность электростанций
Установленная мощность электростанций энергосистемы. Чтобы обеспечить нормальную работу энергосистемы, установленная мощность электростанций должна превышать наибольшую нагрузку
системы.
Представляет собой некоторый запас установленной мощности, необходимый для резервирования агрегатов электростанций в случае их повреждения, проведения ремонтов, а также для обеспечения надежности работы энергосистемы и качества электроэнергии.
Резервная мощность подразделяется на вращающийся (или горячий) резерв и холодный резерв. Вращающийся резерв, как говорит само название, рассредоточен в агрегатах, нагрузка которых меньше номинальной; холодный резерв — это мощность в неработающих агрегатах, которые в случае необходимости могут быть быстро введены в работу.
С учетом резервной мощности, а также требований устойчивости и надежности работы энергосистем (энергообъединений) мощность наиболее крупного агрегата (блока) в энергосистеме, как показывает опыт эксплуатации, не должна превышать 2% установленной мощности энергосистемы (энергообъединения). Мощность же наиболее крупной электростанции не должна по тем же причинам превышать 8—12% установленной мощности энергосистемы (энергообъединения). Отсюда следует, что агрегаты (блоки) мощностью в 500, 800, 1000, 1200 МВт и выше могут быть установлены только в мощных энергосистемах (энергообъединениях) с надежными внутрисистемными связями.
Практика эксплуатации энергосистем показывает, что резервная мощность должна быть не менее 10—15% РустΣ. Увеличение резервной мощности ведет к ухудшению технико-экономических показателей энергосистемы, а ее уменьшение — к понижению надежности электроснабжения потребителей и к трудностям в обеспечении нормальной работы системы.
13. Синхронные генераторы.
Синхронные генераторы (СГ), предназначенные для преобразования механической энергии паровой, газовой или гидравлической турбины, вращающей ротор СГ, в электрическую энергию, имеют неподвижную часть, называемую статором.
Подвижная часть генератора (ротор) может быть выполнена с сосредоточенной обмоткой. В этом случае ротор и сам генератор называются явнополюсными. Если обмотка ротора является распределенной, ротор и генератор называются неявнополюсными. На рис. 3.1 схематично показано поперечное сечение синхронной явнополюсной машины с четырьмя полюсами на роторе 2 чередующейся полярности N-S-N-S. Сосредоточенная обмотка возбуждения 4, размещенная на роторе, обтекается постоянным током, возбуждающим магнитное поле ротора. Ротор приводится во вращение источником механической энергии. Чаще всего — это паровая, газовая или гидравлическая турбина, создающая механический вращающий момент. Синхронные генераторы, вращаемые паро- и газовыми турбинами, называются турбогенераторами, а вращаемые гидравлическими турбинами — гидрогенераторами.