
- •1. Типы электростанций и их особенности.
- •2. Тепловые конденсационные электростанции. Их типы и особенности.
- •3.Теплофикационные электростанции. Их типы и особенности.
- •4.Парогазовые установки.
- •5. Аэс. Их типы и особенности.
- •6. Виды гидравлических электростанций. Их типы и особенности.
- •1)Гэс с суточной регулировкой; 2)Недельное регулирование; 3)Годовое регулирование (сш гэс)
- •7. Гидроаккумулирующие электростанции.
- •8.Нетрадиционные и возобновляемые источники энергии
- •9) Режимы работы электростанций
- •10) Преимущества объединения энергосистем в Единую энергосистему
- •6. Позволяет повысить маневренность в энергосистемах и осуществлять взаимопомощь между оэс при авариях, при проведении плановых ремонтов, при маловодных годах на гэс.
- •11. Показатели суточных и годовых графиков нагрузок электростанций
- •12. Установленная мощность электростанций
- •13. Синхронные генераторы.
- •14. Гидрогенераторы
- •15.Турбогенераторы
- •17. Провода воздушных лэп. Их классификация и маркировка.
- •18)Кабели. Их классификация и маркировка
- •19. Изоляторы. Их классификация и маркировка.
- •20. Опоры воздушных лэп. Их классификация и маркировка.
- •21.Способы прокладки кабельных линий
- •22.Принцип работы трансформатора.
- •Автотрансформатор имеет повышенные токи короткого замыкания.
- •24. Конструкции трансформаторов
- •25. Измерительные трансформаторы
- •26.Трехфазное короткое замыкание
- •27. Гашение электрической дуги
- •1.Интенсивное дутье газо-паровой смеси в зоне дуги особенно в момент когда токи близки к 0.
- •2.Максимально возможное давление в области дуги в конце полупериода.
- •28. Выключатели высокого напряжения.
- •29. В масляных выключателях
- •1)Простота конструкции, 2)высокие отключающие способности
- •1)Большие габариты, 2)большой объём масла, 3)взрыво- и пожароопасность
- •30. Воздушные выключатели высокого напряжения
- •31. Вакуумные выключатели
- •32. Элегазовые выключатели.
- •33. Электромагнитные выключатели
- •34. Выключатель нагрузки
- •35. Разъединитель
- •36. Отделитель.
- •37. Короткозамыкатель
- •38. Электрические схемы электрических станций и подстанций
- •39. Схема электрических соединений ру с одной системой сборных шин.
- •40. Распределительные устройства с двумя системой сборных шин.
- •41.Схемы электрических соединений распределительных устройств блоков трансформатор – линия.
- •42. Схемы мостиков электрических соединений распределительных устройств.
- •43. Кольцевые схемы электрических соединений распределительных устройств.
- •44. Схема электрических соединений распределительных устройств с одной рабочей и обходной системой сборных шин.
- •45. Схема электрических соединений распределительных устройств с двумярабочими и обходной системой сборных шин.
- •46.Схема электрических соединений распределительных устройств с двумя системами сборных шин и тремя выключателями на 2 цепи.
- •47.Схема электрических соединений распределительных устройств с двумя системами сборных шин и четырьмя выключателями на 3 цепи.
- •48. Требования, предъявляемые к электрическим схемам станций и подстанций.
- •50. Схема электрических соединений ру тепловых конденсационных электростанций
- •51. Выбор и проверка выключателей напряжением выше 1000 в
- •52. Выбор и проверка предохранителей напряжением выше 1 кВ
- •53. Выбор сечений жил кабелей напряжением выше 1 кВ
- •56. Выбор трансформаторов тока и трансформаторов напряжения.
- •57. Проверка токоведущих устройств (токопроводов) на термическую и динамическую стойкость
- •58. Выбор предохранителей напряжением до 1000 в
- •59)Проверка автоматических выключателей напряжением до 1000 в
- •60) Выбор сечения проводов и кабелей напряжением до 1000 в по допустимому нагреву.
- •61)Выбор магистральных и распределительных шинопроводов по допустимому нагреву
- •62)Основные положения по расчету осветительных сетей
- •63) Расчет сечений линийраспределительных сетей по допустимой потере напряжения
- •65) Расчет заземляющих устройств
- •66)Линии постоянного тока
4.Парогазовые установки.
Парогазовая установка — электрогенерирующая станция, служащая для производства электроэнергии. Отличается от паросиловых и газотурбинных установок повышенным КПД.
Парогазовая установка состоит из двух отдельных установок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтяной промышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.
Преимущества ПГУ
1)Парогазовые установки позволяют достичь электрического КПД более 60 %. Для сравнения, у работающих отдельно паросиловых установок КПД обычно находится в пределах 33-45 %, для газотурбинных установок — в диапазоне 28-42 %
2)Низкая стоимость единицы установленной мощности
3)Парогазовые установки потребляют существенно меньше воды на единицу вырабатываемой электроэнергии по сравнению с паросиловыми установками
4)Короткие сроки возведения (9-12 мес.)
5)Нет необходимости в постоянном подвозе топлива ж/д или морским транспортом
6)Компактные размеры позволяют возводить непосредственно у потребителя (завода или внутри города), что сокращает затраты на ЛЭП и транспортировку эл. Энергии
7)Более экологически чистые в сравнении с паротурбинными установками
Недостатки ПГУ
1)Низкая единичная мощность оборудования (160—972 МВт на 1 блок), в то время как современные ТЭС имеют мощность блока до 1200 МВт, а АЭС 1200—1600 МВт.
2)Необходимость осуществлять фильтрацию воздуха, используемого для сжигания топлива.
5. Аэс. Их типы и особенности.
На АЭС первичный источник энергии - урановый концентрат. АЭС могут быть сооружены в любом географическом районе, в том числе и труднодоступном, но при наличии источника водоснабжения. Количество (по массе) потребляемого топлива (уранового концентрата) не значительно, что облегчает требования к транспортным связям. АЭС состоят из ряда агрегатов блочного типа, выдающих энергию в сети повышенного напряжения. Агрегаты АЭС, и особенности на быстрых нейтронах, не маневренны. По условиям работы и регулирования, а также по технико-экономическим соображениям предпочтительным является режим с относительно равномерной нагрузкой. Диапазон изменения мощности АЭС составляет 20% АЭС предъявляют повышенные требования к надежности работы оборудования. КПД составляет 35—38%. Практически АЭС не загрязняют атмосферу. Выбросы радиоактивных газов и аэрозолей незначительны, что позволяет сооружать АЭС вблизи городов и центров нагрузки. Трудной проблемой является захоронение или восстановление отработанных топливных элементов. В АЭС(15%) управляемая ядерная реакция, нужен мощный источник воды, имеют большую мощность, не загрязняют окружающую среду (отходы), бывают одно- (биологическая защита – толстый слой бетона с каналами под воду), двух- и многоконтурные.
По виду теплоносителей реакторы на тепловых нейтронах делятся:
Водно-графитовые. (Теплоносителем является вода, замедлитель – графит) РБМК
Водно-водяные (теплоноситель и замедлитель – вода) ВВЭР