
- •1. Типы электростанций и их особенности.
- •2. Тепловые конденсационные электростанции. Их типы и особенности.
- •3.Теплофикационные электростанции. Их типы и особенности.
- •4.Парогазовые установки.
- •5. Аэс. Их типы и особенности.
- •6. Виды гидравлических электростанций. Их типы и особенности.
- •1)Гэс с суточной регулировкой; 2)Недельное регулирование; 3)Годовое регулирование (сш гэс)
- •7. Гидроаккумулирующие электростанции.
- •8.Нетрадиционные и возобновляемые источники энергии
- •9) Режимы работы электростанций
- •10) Преимущества объединения энергосистем в Единую энергосистему
- •6. Позволяет повысить маневренность в энергосистемах и осуществлять взаимопомощь между оэс при авариях, при проведении плановых ремонтов, при маловодных годах на гэс.
- •11. Показатели суточных и годовых графиков нагрузок электростанций
- •12. Установленная мощность электростанций
- •13. Синхронные генераторы.
- •14. Гидрогенераторы
- •15.Турбогенераторы
- •17. Провода воздушных лэп. Их классификация и маркировка.
- •18)Кабели. Их классификация и маркировка
- •19. Изоляторы. Их классификация и маркировка.
- •20. Опоры воздушных лэп. Их классификация и маркировка.
- •21.Способы прокладки кабельных линий
- •22.Принцип работы трансформатора.
- •Автотрансформатор имеет повышенные токи короткого замыкания.
- •24. Конструкции трансформаторов
- •25. Измерительные трансформаторы
- •26.Трехфазное короткое замыкание
- •27. Гашение электрической дуги
- •1.Интенсивное дутье газо-паровой смеси в зоне дуги особенно в момент когда токи близки к 0.
- •2.Максимально возможное давление в области дуги в конце полупериода.
- •28. Выключатели высокого напряжения.
- •29. В масляных выключателях
- •1)Простота конструкции, 2)высокие отключающие способности
- •1)Большие габариты, 2)большой объём масла, 3)взрыво- и пожароопасность
- •30. Воздушные выключатели высокого напряжения
- •31. Вакуумные выключатели
- •32. Элегазовые выключатели.
- •33. Электромагнитные выключатели
- •34. Выключатель нагрузки
- •35. Разъединитель
- •36. Отделитель.
- •37. Короткозамыкатель
- •38. Электрические схемы электрических станций и подстанций
- •39. Схема электрических соединений ру с одной системой сборных шин.
- •40. Распределительные устройства с двумя системой сборных шин.
- •41.Схемы электрических соединений распределительных устройств блоков трансформатор – линия.
- •42. Схемы мостиков электрических соединений распределительных устройств.
- •43. Кольцевые схемы электрических соединений распределительных устройств.
- •44. Схема электрических соединений распределительных устройств с одной рабочей и обходной системой сборных шин.
- •45. Схема электрических соединений распределительных устройств с двумярабочими и обходной системой сборных шин.
- •46.Схема электрических соединений распределительных устройств с двумя системами сборных шин и тремя выключателями на 2 цепи.
- •47.Схема электрических соединений распределительных устройств с двумя системами сборных шин и четырьмя выключателями на 3 цепи.
- •48. Требования, предъявляемые к электрическим схемам станций и подстанций.
- •50. Схема электрических соединений ру тепловых конденсационных электростанций
- •51. Выбор и проверка выключателей напряжением выше 1000 в
- •52. Выбор и проверка предохранителей напряжением выше 1 кВ
- •53. Выбор сечений жил кабелей напряжением выше 1 кВ
- •56. Выбор трансформаторов тока и трансформаторов напряжения.
- •57. Проверка токоведущих устройств (токопроводов) на термическую и динамическую стойкость
- •58. Выбор предохранителей напряжением до 1000 в
- •59)Проверка автоматических выключателей напряжением до 1000 в
- •60) Выбор сечения проводов и кабелей напряжением до 1000 в по допустимому нагреву.
- •61)Выбор магистральных и распределительных шинопроводов по допустимому нагреву
- •62)Основные положения по расчету осветительных сетей
- •63) Расчет сечений линийраспределительных сетей по допустимой потере напряжения
- •65) Расчет заземляющих устройств
- •66)Линии постоянного тока
1. Типы электростанций и их особенности.
Электростанция производит (или генерирует) электрическую энергию, а теплофикационная электростанция — электрическую и тепловую энергию. По виду первичного источника энергии, преобразуемого в электрическую или тепловую энергию.
В настоящее время используют следующие типы электростанций: 1)тепловые электростанции (ТЭС), которые подразделяются на конденсационные (КЭС), теплофикационные (теплоэлектроцентрали — ТЭЦ) и газотурбинные (ГТУЭС). Крупные КЭС, обслуживающие потребителей значительного района страны, получили название гос. районные ЭС (ГРЭС); 2)гидроэлектростанции (ГЭС) и гидроаккумулирующие электростанции (ГАЭС); 3)атомные электростанции (АЭС); 4)солнечные электростанции (СЭС); 5)геотермальные электростанции (ГТЭС);6)дизельные электростанции (ДЭС); 7)приливные электростанции (ПЭС); 8)ветроэлектростанции (ВЭС).
Состав электростанций различного типа по установленной мощности зависит от наличия и размещения по территории страны гидроэнергетических и теплоэнергетических ресурсов, их технико-экономических характеристик, включая затраты на транспорт топлива, а также от технико-экономических показателей электростанций. На ТЭС первичный источник энергии - органическое топливо (уголь, газ, нефть), на АЭС - урановый концентрат, на ГЭС - вода (гидроресурсы).
ТЭС(65%) свободно распространяются (учитывают транспортные расходы и кпд передачи энергии), не зависят от сезонных колебаний, имеют низкий кпд(32%), загрязняют сернистым ангедридом и золой, охлаждение с помощью градирни, состоит из: угольной эстакады, бункера, мельницы, топки, воздуходувки, трубы с фильтром, водоёма, вод. насоса, турбины, эл. генератора, конденсатора)
2. Тепловые конденсационные электростанции. Их типы и особенности.
Тепловые конденсационные электростанции(КЭС) вырабатывают только электроэнергию, их строят по возможности ближе к местам добычи топлива, удобным для водоснабжения. Их выполняют из ряда блочных агрегатов (котел – турбогенератор - повышающий трансформатор) мощностью от 200 до 1200 МВт, выдающих выработанную энергию в сети 110—750 кВ. Особенность агрегатов КЭС заключается в том, что они недостаточно маневренны: подготовка к пуску, разворот, синхронизация и набор нагрузки требуют 3—6 ч. Они существенно загрязняют атмосферу, изменяют тепловой режим источников водоснабжения.
На КЭС применяется органическое топливо: твердое топливо, преимущественно уголь разных сортов в пылевидном состоянии, газ, мазут и т. п. Тепло, выделяемое при сжигании топлива, передаётся в котельном агрегате (парогенераторе) рабочему телу, обычно — водяному пару.
Преобразование энергии на КЭС производится на основе термодинамического цикла Ренкина, в котором подвод тепла воде и водяному пару в котле и отвод тепла охлаждающей водой в конденсаторе турбины происходят при постоянном давлении, а работа пара в турбине и повышение давления воды в насосах — при постоянной энтропии.
Увеличение кпд КЭС достигается главным образом повышением начальных параметров (начальных давления и температуры) водяного пара, совершенствованием термодинамического цикла, а именно — применением промежуточного перегрева пара и регенеративного подогрева конденсата и питательной воды паром из отборов турбины.
На КЭС предпочтительным является режим с равномерной нагрузкой в пределах от номинальной нагрузки до нагрузки, соответствующей техническому минимуму