
- •Операционные системы. Определение, назначение, функции.
- •Види ос. Характеристика наиболее распространенных систем.
- •Структурная схема ос. Основные компоненты.
- •Загрузчик ос. Этапы загрузки на примере Lilo и grub
- •Характеристики ядра ос. Назначения и функции ядра.
- •Способы организации памяти. Достоинаства и недостатки каждого способоа.
- •Способы и средства организации виртуальной памяти.
- •Основные принципы и характеристики защищенного режима Intel x86
- •Физическая и виртуальная раскладка памяти в Linux.
- •Понятие задачи и процесса. Контекст процесса.
- •Диаграмма состояний процесса. Характеристика и назначение состояний.
- •Режим пользователя и режим ядра в контексте процессов ос.
- •Переключение процессора между процессами.
- •Понятие прерывания. Принцип работы программируемого контроллера прерывания.
- •Планировщик процессов. Основные способы и алгоритмы планирования процессов.
- •Требования к аппаратным средствам для современных ос.
- •Основные структуры данных для реализации процессов в Linux
- •Буферизация ввода-вывода. Принципы работы cash буферов.
- •Основы организации дискового пространства на внешних носителях.
- •Принцип отложенной записи для буферов ввода-вывода.
Диаграмма состояний процесса. Характеристика и назначение состояний.
каждый процесс может находиться как минимум в двух состояниях: процесс исполняется и процесс не исполняется
Процесс, находящийся в состоянии процесс исполняется, через некоторое время может быть завершен операционной системой или приостановлен и снова переведен в состояние процесс не исполняется. Приостановка процесса происходит по двум причинам: для его дальнейшей работы потребовалось какое-либо событие (например, завершение операции ввода-вывода) или истек временной интервал, отведенный операционной системой для работы данного процесса. После этого операционная система по определенному алгоритму выбирает для исполнения один из процессов, находящихся в состоянии процесс не исполняется, и переводит его в состояние процесс исполняется. Новый процесс, появляющийся в системе, первоначально помещается в состояние процесс не исполняется.
Это очень грубая модель, она не учитывает, в частности, то, что процесс, выбранный для исполнения, может все еще ждать события, из-за которого он был приостановлен, и реально к выполнению не готов. Для того чтобы избежать такой ситуации, разобьем состояние процесс не исполняется на два новых состояния: готовность и ожидание
Всякий новый процесс, появляющийся в системе, попадает в состояние готовность. Операционная система, пользуясь каким-либо алгоритмом планирования, выбирает один из готовых процессов и переводит его в состояние исполнение. В состоянии исполнение происходит непосредственное выполнение программного кода процесса. Выйти из этого состояния процесс может по трем причинам:
операционная система прекращает его деятельность;
он не может продолжать свою работу, пока не произойдет некоторое событие, и операционная система переводит его в состояние ожидание ;
в результате возникновения прерывания в вычислительной системе (например, прерывания от таймера по истечении предусмотренного времени выполнения) его возвращают в состояние готовность.
Из состояния ожидание процесс попадает в состояние готовность после того, как ожидаемое событие произошло, и он снова может быть выбран для исполнения.
Наша новая модель хорошо описывает поведение процессов во время их существования, но она не акцентирует внимания на появлении процесса в системе и его исчезновении. Для полноты картины нам необходимо ввести еще два состояния процессов: рождение и закончил исполнение
Теперь для появления в вычислительной системе процесс должен пройти через состояние рождение. При рождении процесс получает в свое распоряжение адресное пространство, в которое загружается программный код процесса ; ему выделяются стек и системные ресурсы; устанавливается начальное значение программного счетчика этого процесса и т. д. Родившийся процесс переводится в состояние готовность. При завершении своей деятельности процесс из состояния исполнение попадает в состояние закончил исполнение.
Режим пользователя и режим ядра в контексте процессов ос.
Режим пользователя
Режим пользователя состоит из подсистем, которые передают запросы ввода\вывода соответствующему драйверу режима ядра посредством менеджера Ввода-вывода. Уровень пользователя состоит из двух подсистем — подсистема окружения(Environment) и интегральная подсистема (Integral).
Подсистема окружения разработана для запуска приложений, написанных для разных типов операционных систем. Ни одна из подсистем окружения не имеет прямого доступа к аппаратной части компьютера. Доступ к ресурсам памяти происходит посредством Менеджера Виртуальной Памяти, который работает в режиме ядра. Также, приложения запускаются с меньшим приоритетом, чем процессы режима ядра.
Подсистема окружения состоит из следующих подсистем — подсистема Win32, подсистема OS/2 и подсистема POSIX. Подсистема окружения Win32 запускает 32-разрядные Windows приложения. Она содержит консоль и поддержку текстового окна, обработку ошибок для всех других подсистем окружения. Поддерживает VDM (Virtual DOS Machine), которая позволяет запускать 16-разрядные DOS и Windows(Win16) приложения. VDM запускается в своем собственном адресном пространстве и эмулирует систему MS-DOS, запущенную на компьютере с процессором Intel 80486. Программы Win16 запускаются в режиме Win16 VDM. Каждая программа запускается в одном процессе с использованием одного адресного пространства, но для каждой программы используется свой отдельный поток. Однако Windows NT позволяет запускать Win16 программы в отдельных Win16 VDM процессах, реализуя вытесняющую многозадачность. Процесс подсистемы окружения Win32 — csrss.exe также включает в себя функциональность менеджера окон, то есть обрабатывает входящие события, такие как нажатие клавиш клавиатуры и мыши, и передает их на обработку соответствующим приложениям. Каждое приложение само производит перерисовку окон в ответ на эти сообщения.
Подсистема окружения OS/2 поддерживает неграфические 16-разрядные приложения операционной системы OS/2 и эмулирует систему OS/2 2.1.x.
Подсистема окружения POSIX поддерживает приложения написанные в соответствии со стандартом POSIX.1
Интегрированная подсистема (Integral subsystem) следит за некоторыми функциями операционной системы от имени подсистемы окружения. Состоит из подсистемы безопасности, службы рабочей станции и службы сервера. Служба безопасности обращается с маркерами доступа, позволяет или запрещает доступ к учетной записи пользователя, обрабатывает запросы авторизации и инициирует процесс входа пользователя в систему. Служба Рабочая станция обеспечивает доступ компьютера к сети — является API для сетевого редиректора (ПО эмулирующее доступ к удаленной файловой системе как к локальной). Служба Сервер позволяет компьютеру предоставлять сетевые сервисы.
Режим ядра
Режим ядра Windows NT имеет полный доступ к аппаратной части компьютера и системным ресурсам. Работает в защищенной области памяти. Контролирует потоки, управляет памятью и взаимодействием с аппаратной частью. Предотвращает доступ к критическим областям памяти со стороны приложений и служб пользовательского режима. Для выполнения подобных операций процесс пользовательского режима должен попросить режим ядра выполнить её от своего имени.
Архитектура x86 поддерживает 4 уровня привилегий — от 0 до 3 , но используются только 0 и 3 уровень. Режим пользователя использует уровень 3, а режим ядра — 0. Это было сделано для возможности переноса на платформу RISC, которая использует только два уровня привилегий. Режим ядра состоит из исполнительных служб, которые представляют собой различные модули, выполняющие определенные задачи, драйвера ядра, само ядро и уровень аппаратных абстракций HAL
Исполнительная подсистема.
Работает с вводом\выводом, менеджером объектов, управлением над процессами и безопасностью. Неофициально делится на несколько подсистем — менеджер кэша, менеджер конфигурации, менеджер ввода\вывода, вызов локальных процедур, менеджер памяти, монитор безопасности. Системные службы, то есть системные вызовы реализованы на этом уровне, за исключением нескольких вызовов, которые вызывают непосредственно ядро для большей производительности. В данном контексте термин «служба» относится к вызываемым подпрограммам, или набору вызываемых подпрограмм. Они отличаются от служб, выполняемых в режиме пользователя, которые в какой-то мере являются аналогом демонов в UNIX- подобных системах.
Менеджер объектов
Это исполнительная подсистема, к которой обращаются все остальные модули исполнительной подсистемы, в частности системные вызовы, когда им необходимо получить доступ к ресурсам Windows NT. Менеджер объектов служит для уменьшения дублирования объектов, что может привести к ошибкам в работе системы. Для менеджера объектов каждый ресурс системы является объектом — будь то физический ресурс типа периферийного устройства, файловой системы, или логический ресурс — файл и др. Каждый объект имеет свою структуру, или тип объекта.
Создание объекта делится на две стадии — создание и вставка. Создание — создается пустой объект и резервируются необходимые ресурсы, например имя в пространстве имен. Если создание пустого объекта произошло успешно, то подсистема, ответственная за создание объекта заполняет его. Если инициализация успешна, то подсистема заставляет менеджер объектов произвести вставку объекта — то есть сделать его доступным по своему имени или дескриптору.
Билет №8