Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_teoriyu_veroyatnosti.docx
Скачиваний:
10
Добавлен:
01.04.2025
Размер:
603.88 Кб
Скачать
  1. Свойства дисперсии случайной величины.

Дисперсией (рассеянием) дискретной случайной величины D(X) называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

1 свойство. Дисперсия постоянной величины C равна нулю; D(C) = 0.

Доказательство. По определению дисперсии, D(C) = M{[C – M(C)]2}.

Из первого свойства математического ожидания D(C) = M[(C – C)2] = M(0) = 0.

2 свойство. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D(CX) = C2 D(X)

Доказательство. По определению дисперсии, D(CX) = M{[CX – M(CX)]2}

Из второго свойства математического ожидания D(CX)=M{[CX – CM(X)]2}= C2M{[X – M(X)]2}=C2D(X)

3 свойство. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

D[X + Y ] = D[X] + D[Y ].

Доказательство. По формуле для вычисления дисперсии имеем

D(X + Y) = M[(X + Y )2] − [M(X + Y)]2

Раскрыв скобки и пользуясь свойствами математического ожидания суммы нескольких величин и произведения двух независимых случайных величин, получим

D(X + Y) = M[X2+ 2XY + Y2] − [M(X) + M(Y )]2 = M(X2) + 2M(X)M(Y) + M(Y2) − M2(X) − 2M(X)M(Y) − M2(Y) = {M(X2) − [M(X)]2}+{M(Y2) − [M(Y)]2} = D(X) + D(Y). Итак, D(X + Y) = D(X) + D(Y)

4 свойство. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D(X − Y) = D(X) + D(Y)

Доказательство. В силу третьего свойства D(X − Y) = D(X) + D(–Y). По второму свойству

D(X − Y) = D(X) + (–1)2 D(Y) или D(X − Y) = D(X) + D(Y)

  1. Числовые характеристики систем случайных величин. Коэффициент корреляции, свойства коэффициента корреляции.

Корреляционный момент. Характеристикой зависимости между случайными величинами   и   служит математическое ожидание произведения отклонений   и   от их центров распределений (так иногда называют математическое ожидание случайной величины), которое называется корреляционным моментом или ковариацией:

Для вычисления корреляционного момента дискретных величин используют формулу:

а для непрерывных величин – формулу:

Коэффициентом корреляции rxy случайных величин X и Y называют отношение корреляционного момента к произведению среднеквадратичных отклонений величин: - коэффициент корреляции; 

 Свойства коэффициента корреляции:

1.      Если Х и У независимые случайные величины, то r =0;

2.      -1≤ r ≤1 .При этом, если |r| =1, то между Х и У функциональная, а именно линейная зависимость;

3.      r характеризует относительную величину отклонения М(ХУ) от М(Х)М(У), и т.к. отклонение имеет место только для зависимых величин, то  rхарактеризует тесноту зависимости.

  1. Линейная функция регрессии.

Рассмотрим двумерную случайную величину (X, Y), где X и У — зависимые случайные величины. Представим одну из величин как функцию другой. Ограничимся приближенным представлением (точное приближение, вообще говоря, невозможно) величины Y в виде линейной функции величины X:

где α и β — параметры, подлежащие определению.

Теорема. Линейная средняя квадратическая регрессия Y на X имеет вид

где mx=M(X), my=M(Y), σx=√D(X),  σy=√D(Y),  r=µxy/(σxσy)—коэффициент корреляции величин X и Y.

Коэффициент β=rσyx называют коэффициентом регрессии Y на X, а прямую

называют прямой среднеквадратической регрессии Y на X.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]