
- •Случайные события: виды событий, действия над событиями. Свойства действий над событиями. Отношения между событиями.
- •Частота и относительная частота события. Свойства относительной частоты. Вероятность случайного события. Связь между вероятностью и относительной частотой.
- •Аксиоматическое определение вероятности.
- •Классическое определение вероятности.
- •Геометрическая вероятность.
- •Вероятность суммы событий
- •Условная вероятность случайного события. Вероятность произведения событий. Зависимые и независимые события.
- •Формула полной вероятности. Формула Байеса.
- •Независимые повторные испытания. Формула Бернулли.
- •Локальная теорема Муавра-Лапласа. Интегральная теорема Муавра-Лапласа.
- •Дискретная случайная величина: определение, закон распределения, функция распределения. Числовые характеристики дискретной случайной величины.
- •Биноминальное распределение.
- •Распределение Пауссона.
- •Непрерывная случайная величина: определение, функция распределения и ее свойства.
- •Плотность распределения непрерывной случайной величны, свойства плотности распределения.
- •Числовые характеристики непрерывной случайной величины.
- •Равномерное распределение.
- •Нормальное распределение.
- •Двумерная дискретная случайная величина: закон совместного распределения, частные законы распределения компонент. Условные законы распределения компонент. Независимость случайных величин.
- •Свойства математического ожидания случайной величины
- •Свойства дисперсии случайной величины.
- •Числовые характеристики систем случайных величин. Коэффициент корреляции, свойства коэффициента корреляции.
- •Линейная функция регрессии.
- •Неравенство Маркова.
- •Неравенство Чебышева.
- •Теорема Чебышева.
- •Теорема Бернулли.
- •Центральная предельная теорема.
- •Генеральная и выборочная совокупности. Полигон частот ( относительных частот), гистограмма.
- •Выборочная функция распределения.
- •Точечная оценка неизвестных параметров распределения: общая постановка задачи, свойства статистических оценок (несмещенность, состоятельность, эффективность).
- •Выборочная средняя как точечная оценка независимого математического ожидания, свойства.
- •Выборочная дисперсия (определение, свойства), исправленная выборочная дисперсия.
- •Интервальные оценки параметров распределений. Доверительная вероятность и уровень значимости.
- •Проверка статистических гипотез. Общая схема, ошибки первого и второго рода, односторонний и двусторонний критерий, мощность критерия.
- •Сравнение выборочной средней с гипотетической генеральной средней.
Свойства дисперсии случайной величины.
Дисперсией (рассеянием) дискретной случайной величины D(X) называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания
1 свойство. Дисперсия постоянной величины C равна нулю; D(C) = 0.
Доказательство. По определению дисперсии, D(C) = M{[C – M(C)]2}.
Из первого свойства математического ожидания D(C) = M[(C – C)2] = M(0) = 0.
2 свойство. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
D(CX) = C2 D(X)
Доказательство. По определению дисперсии, D(CX) = M{[CX – M(CX)]2}
Из второго свойства математического ожидания D(CX)=M{[CX – CM(X)]2}= C2M{[X – M(X)]2}=C2D(X)
3 свойство. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:
D[X + Y ] = D[X] + D[Y ].
Доказательство. По формуле для вычисления дисперсии имеем
D(X + Y) = M[(X + Y )2] − [M(X + Y)]2
Раскрыв скобки и пользуясь свойствами математического ожидания суммы нескольких величин и произведения двух независимых случайных величин, получим
D(X + Y) = M[X2+ 2XY + Y2] − [M(X) + M(Y )]2 = M(X2) + 2M(X)M(Y) + M(Y2) − M2(X) − 2M(X)M(Y) − M2(Y) = {M(X2) − [M(X)]2}+{M(Y2) − [M(Y)]2} = D(X) + D(Y). Итак, D(X + Y) = D(X) + D(Y)
4 свойство. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:
D(X − Y) = D(X) + D(Y)
Доказательство. В силу третьего свойства D(X − Y) = D(X) + D(–Y). По второму свойству
D(X − Y) = D(X) + (–1)2 D(Y) или D(X − Y) = D(X) + D(Y)
Числовые характеристики систем случайных величин. Коэффициент корреляции, свойства коэффициента корреляции.
Корреляционный
момент. Характеристикой
зависимости между случайными
величинами
и
служит математическое
ожидание произведения отклонений
и
от
их центров распределений (так иногда
называют математическое ожидание
случайной величины), которое называется
корреляционным моментом или ковариацией:
Для вычисления корреляционного момента дискретных величин используют формулу:
а для непрерывных величин – формулу:
Коэффициентом
корреляции
rxy случайных величин X и Y называют
отношение корреляционного момента к
произведению среднеквадратичных
отклонений величин:
-
коэффициент корреляции;
Свойства коэффициента корреляции:
1. Если Х и У независимые случайные величины, то r =0;
2. -1≤ r ≤1 .При этом, если |r| =1, то между Х и У функциональная, а именно линейная зависимость;
3. r характеризует относительную величину отклонения М(ХУ) от М(Х)М(У), и т.к. отклонение имеет место только для зависимых величин, то rхарактеризует тесноту зависимости.
Линейная функция регрессии.
Рассмотрим двумерную случайную величину (X, Y), где X и У — зависимые случайные величины. Представим одну из величин как функцию другой. Ограничимся приближенным представлением (точное приближение, вообще говоря, невозможно) величины Y в виде линейной функции величины X:
где
α и β — параметры, подлежащие определению.
Теорема. Линейная средняя квадратическая регрессия Y на X имеет вид
где mx=M(X),
my=M(Y),
σx=√D(X),
σy=√D(Y),
r=µxy/(σxσy)—коэффициент
корреляции величин X и Y.
Коэффициент β=rσy/σx называют коэффициентом регрессии Y на X, а прямую
называют
прямой среднеквадратической
регрессии Y
на X.