
- •Билет № 1
- •1. Критерий устойчивости Найквиста
- •Механические измерительные преобразователи.
- •Оптоэлектронный переключатель. Принцип действия, область применения.
- •Билет 2
- •Классификация су по принципу управления (управление по возмущению, по отклонению, комбинированные системы).
- •Иерархический и декомпозиционный принципы проектирования.
- •Государственная система приборов и средств автоматизации. Характеристика ветвей гсп.
- •. Триодные и диодные тиристоры. Назначение, принцип действия.
- •. Технологические процессы как объекты автоматического управления. Возмущения, управляющие воздействия, входы и выходы. Обобщенная структурная схема.
- •Схемы взаимодействия компьютеров с периферийными устройствами.
- •1.2.1. Связь компьютера с периферийными устройствами
- •Электромагнитные измерительные преобразователи.
- •Назначение и схемы ацп.
- •Линейные и нелинейные сау. Методы линеаризации статических характеристик нелинейных объектов.
- •Классификация плк. Моноблочные контроллеры. Модульные контроллеры. Pc-base контроллеры.
- •Емкостные измерительные преобразователи. Емкостные электромеханические преобразователи
- •Назначение и схемы цап.
- •Билет 5
- •Статические и астатические объекты управления.
- •Состав математического и программного обеспечения асу тп.
- •Пьезоэлектрические измерительные преобразователи. Принцип действия, область применения.
- •Пьезоэффект
- •Функциональные возможности и особенности работы транзисторов.
- •Билет 6
- •Устойчивость сау. Алгебраические критерии устойчивости.
- •Модули дискретного ввода-вывода.
- •Классификация измерительных преобразователей температуры.
- •Вольт-амперные характеристики биполярных, моп- и кмоп- интегральных транзисторов.
- •Билет 7
- •Астатические объекты управления. Динамические характеристики.
- •Функциональные схемы автоматизации: изображения средств управления.
- •Расходомеры постоянного перепада давления. Принцип действия, область применения.
- •Триггеры. Особенности работы, назначение.
- •Билет 8
- •Структурная схема сау с обратной связью. Назначение элементов.
- •Человеко-машинный интерфейс как элемент системы управления.
- •Емкостные измерительные преобразователи. Емкостные электромеханические преобразователи
- •Тиристоры. Вольт-амперные характеристики тиристоров.
- •Билет 9
- •Устойчивость систем управления. Теорема Ляпунова для линейных систем.
- •Проектирование щитов и стоек.
- •Волновые, акустические и радиоизотопные измерительные преобразователи уровня.
- •Оптроны. Назначение и принципы действия.
- •Обобщенная структурная схема
- •Билет 10
- •Классификация принципов регулирования. Регулирование по отклонению.
- •Интегрированные системы управления.
- •Чувствительность, точность и погрешности измерительных преобразователей.
- •Сглаживающие фильтры. Стабилизаторы напряжения.
- •Билет 11
- •Комбинированный (замкнуто-разомкнутый) принцип регулирования.
- •1.Разомкнутые,замкнутые и комбинированные системы управления.
- •Автоматизированное рабочее место оператора-технолога.
- •Системы автоматического контроля.
- •Оптоэлектронные полупроводниковые и интегральные приборы и устройства.
- •Билет 12
- •Динамические характеристики систем управления с пид-регулятором.
- •Внешние электрические и трубные проводки.
- •Внешние электрические и трубные проводки.
- •14.1 Общие положения
- •14.2 Выбор способа выполнения электропроводок
- •14.3 Выбор проводов и кабелей
- •15.1 Общие положения
- •15.2 Требования к трубным проводкам
- •Основные принципы и теоретическая база стандартизации.
- •Логические цифровые устройства на интегральных схемах.
- •Логические цифровые устройства на интегральных схемах.
- •Билет 13
- •Критерий устойчивости Михайлова.
- •Назначение концентратов и сетевых адаптеров в локальных сетях.
- •Принципиальная схема симметричного триггера на биполярных транзисторах.
- •Билет 14
- •Классификация алгоритмов (законов) управления.
- •Методика выбора плк. Требования к эвм, используемых в асутп.
- •Тензорезисторные преобразователи. Принцип действия, назначение.
- •Принцип действия и назначение оптоэлектронной пары.
- •Билет 15
- •Динамические характеристики объектов с самовыравниванием.
- •Схемы взаимодействия компьютера с периферийными устройствами.
- •Методы измерений: непосредственной оценки, сравнения, дифференциальный.
- •Классификация электромеханических реле.
- •Билет 16
- •Типовые законы регулирования.
- •Классификация, функции и характеристики сетевых адаптеров.
- •Методы измерений влажности воздуха и газов.
- •Принцип действия и назначения диодных, резисторных, транзисторных и тиристорных оптоэлектронных пар.
- •Билет 17
- •Динамические характеристики астатических объектов.
- •Характеристики кабелей, применяемых в компьютерных сетях.
- •Компенсационные измерительные схемы.
- •Классификация исполнительных механизмов.
- •Билет 18
- •Устойчивость сау. Амплитудно-фазовой критерий Найквиста.
- •Сравнительная оценка локальных и глобальных вычислительных сетей.
- •Индукционные расходомеры. Принцип действия, область применения.
- •Электродвигательные им.
- •Билет 19
- •Правила преобразования структурных схем управления.
- •Методы организации доступа к линиям связи
- •2. Метод Ethernet
- •3. Метод Archnet
- •Многостанционный доступ частота коммутация
- •4. Метод Token Ring
- •Акустические уровнемеры. Принцип действия, область применения.
- •Электромагнитные исполнительные механизмы.
- •Билет 20
- •Передаточная функция и частотные характеристики усилительного звена.
- •Топология промышленных сетей. Физическая реализация каналов передачи данных. Определение
- •Структура "звезда"
- •Электрические измерительные преобразователи.
- •Гидравлические исполнительные механизмы.
- •Билет 21
- •Передаточная функция и частотные характеристики апериодического звена 1-го порядка.
- •Принципы проектирования схем автоматизации.
- •Методы измерения плотности веществ.
- •Пневматические им.
- •Билет 22
- •Чистое запаздывание. Передаточная функция звена чистого запаздывания.
- •Пример системы с транспортным запаздыванием
- •Передаточная функция имеет вид .
- •Звено чистого запаздывания
- •Принципы построения принципиальных электрических схем.
- •Проводниковые и полупроводниковые термометры сопротивления. Принцип действия и конструктивные формы. Полупроводниковые термометры (терморезисторы, термисторы)
- •Шаговые им.
- •Билет 23
- •Элементарные звенья. Передаточная функция, частотные характеристики интегрирующего звена.
- •3.1. Виды элементарных динамических звеньев
- •Лингвистическое, методическое и организационное обеспечение асу тп.
- •Методы измерения влажности твердых и сыпучих материалов.
- •Релейные исполнительные механизмы.
- •Билет 24
- •Элементарные звенья. Передаточная функция, частотные характеристики дифференцирующего звена.
- •3.1. Виды элементарных динамических звеньев
- •Состав информационного обеспечения асу тп.
- •Методы и средства измерения давления. Деформационные измерительные преобразователи.
- •1.1.4 Деформационные измерительные преобразователи давления, основанные на методе прямого преобразования
- •1.1.4.1 Индуктивные измерительные преобразователи давления.
- •Дифференциально-трансформаторные измерительные преобразователи давления.
- •1.1.4.3 Емкостные измерительные преобразователи давления.
- •Тензорезисторные измерительные преобразователи давления.
- •1.1.4.5 Пьезоэлектрические измерительные преобразователи давления.
- •Логические цифровые устройства на интегральных микросхемах.
- •Билет 25
- •Качество сау. Запас устойчивости.
- •1 Понятие запаса устойчивости
- •Состав аппаратного обеспечения асутп.
- •Аппаратное обеспечение
- •Принцип действия и назначение импульсных трансформаторов.
- •Описание
- •Виды импульсных трансформаторов
- •Билет 26
- •Показатели качества переходных процессов.
- •Математическое и программное обеспечение асутп.
- •Термоэлектрические преобразователи температуры.
- •Тиристоры. Вольт-амперные характеристики тиристоров.
- •Билет 27
- •Классификация принципов регулирования. Принцип регулирования по возмущению.
- •Разомкнутые системы:
- •Замкнутые системы:
- •Структурная схема асутп. Локальные системы управления.
- •Измерительные преобразователи для измерения количества жидкостей, газа, пара и единиц продукции.
- •Тиристорный электропривод двигателей постоянного тока.
- •Билет 28
- •Классификация систем управления по виду управляющих воздействий.
- •Организация проектирования локальных систем управления.
- •Правила выполнения структурных электрических схем.
- •Классификация транзисторов по типам и группам.
- •Билет 29
- •Виды запаздываний объектов управления. Звено чистого запаздывания.
- •Звено чистого запаздывания
- •Техническое задание на проектирование.
- •Электрические методы измерения уровня жидких и сыпучих сред.
- •Классификация регулирующих органов по принципу действия. Дозаторы.
- •Билет 30
- •Моделирование технологических процессов. Виды моделей.
- •Изображение технологического оборудования и коммуникаций на схемах автоматизации.
- •Измерения. Виды и методы измерений.
- •4.1Виды измерений
- •Классификация и основные характеристики электромагнитных муфт.
. Технологические процессы как объекты автоматического управления. Возмущения, управляющие воздействия, входы и выходы. Обобщенная структурная схема.
Производственные процессы характеризуются множеством регулируемых величин: температурой, давлением, расходом, концентрацией и т. д., которые называются параметрами процесса. Чтобы технологическое оборудование работало в требуемом режиме, то есть с высоким КПД, с заданной производительностью, давало продукцию необходимого качества и работало надежно, необходимо поддерживать величины, характеризующие процесс, в большинстве случаев постоянными. Эта важнейшая задача возложена на промышленные системы автоматического регулирования и стабилизации технологических процессов.
Промышленные системы регулирования занимают второй уровень современных иерархических систем управления технологическими процессами. Их главная задача состоит в том, чтобы стабилизировать технологические параметры на заданном уровне. Этим занимаются системы автоматической стабилизации. В этих системах сигнал задания (установка регулятора) остается постоянным в течении длительного времени работы. Другой, не менее важной задачей, является задача программного управления технологическим агрегатом, что обеспечивает переход на новые режимы работы. Решение этой проблемы осуществляется с помощью той же системы автоматической стабилизации, задание которой изменяется от программного задатчика.
В современных технологических комплексах имеются сотни и тысячи контуров регулирования, от качества работы которых во многом зависит качество выдаваемой продукции. Поэтому для большинства промышленных САР необходима достаточно высокая точность их работы 1-1,5%. При этом главное назначение системы стабилизации - это компенсация внешних возмущающих воздействий, действующих на объект управления.
Структурная схема одноконтурной САР промышленным объектом управления приведена на рис. 2.1. Основными элементами ее являются: АР - автоматический регулятор, УМ - усилитель мощности, ИМ - исполнительный механизм, РО - регулируемый орган, СОУ - собственно объект управления, Д - датчик, НП - нормирующий преобразователь, ЗД - задатчик, ЭС - элемент сравнения. Обозначение переменных: Yз- задающий сигнал, e - ошибка регулирования, Up- выходной сигнал регулятора, Uy- управляющее напряжение, h - перемещение регулирующего органа, Qr- расход вещества или энергии, F - возмущающее воздействие, T - регулируемый параметр (например температура), Yос- сигнал обратной связи (выходное напряжение или ток преобразователя).
Характерной особенностью схемы является наличие нормирующего преобразователя НП, обеспечивающего работу автоматического регулятора со стандартными значениями тока (0ё5 mA) или напряжения (0ё10 В).
Нормирующий преобразователь выполняет следующие функции:
1) преобразует нестандартный входной сигнал (mB) в стандартный выходной сигнал;2) осуществляет фильтрацию входного сигнала;3) осуществляет линеаризацию статической характеристики датчика с целью получения линейного диапазона;4) применительно к термопаре, осуществляет температурную компенсацию холодного спая термопары.
По характеру протекания технологических процессов объекты управления делятся на циклические, непрерывно- циклические и непрерывные. Локальные системы наиболее широко применяются для управления объектами второго и третьего типов. По характеру установившегося значения выходной величины объекта при действии на его вход ступенчатого сигнала выделяют объекты с самовыравниванием и без самовыравнивания.
По количеству входных и выходных величин и их взаимосвязи объекты делятся не одномерные (один вход и один выход) и многомерные. Последние могут быть многосвязными - когда наблюдается взаимное влияние каналов регулирования друг на друга, либо несвязные - взаимосвязь между каналами которых мала. По виду статических характеристик объекты делятся на линейные и нелинейные. В последних статическая характеристика может быть гладкой, линеаризуемой в окрестности заданной точки, либо носить существенно нелинейный характер. При наличии в объекте нескольких нелинейностей, графическим методом определяется его суммарная нелинейная характеристика. Большинство систем регулирования относиться к классу систем автоматической стабилизации режима работы объекта относительно его рабочей точки (относительно номинального режима работы). В этом случае в процессе работы отклонения переменных, относительно рабочей точки будут малы, что позволяет использовать линейные модели объекта управления. Однако, при смене рабочей точки происходит изменение коэффициента усиления объекта, что будет негативно влиять на динамику замкнутой системы.