
- •Билет № 1
- •1. Критерий устойчивости Найквиста
- •Механические измерительные преобразователи.
- •Оптоэлектронный переключатель. Принцип действия, область применения.
- •Билет 2
- •Классификация су по принципу управления (управление по возмущению, по отклонению, комбинированные системы).
- •Иерархический и декомпозиционный принципы проектирования.
- •Государственная система приборов и средств автоматизации. Характеристика ветвей гсп.
- •. Триодные и диодные тиристоры. Назначение, принцип действия.
- •. Технологические процессы как объекты автоматического управления. Возмущения, управляющие воздействия, входы и выходы. Обобщенная структурная схема.
- •Схемы взаимодействия компьютеров с периферийными устройствами.
- •1.2.1. Связь компьютера с периферийными устройствами
- •Электромагнитные измерительные преобразователи.
- •Назначение и схемы ацп.
- •Линейные и нелинейные сау. Методы линеаризации статических характеристик нелинейных объектов.
- •Классификация плк. Моноблочные контроллеры. Модульные контроллеры. Pc-base контроллеры.
- •Емкостные измерительные преобразователи. Емкостные электромеханические преобразователи
- •Назначение и схемы цап.
- •Билет 5
- •Статические и астатические объекты управления.
- •Состав математического и программного обеспечения асу тп.
- •Пьезоэлектрические измерительные преобразователи. Принцип действия, область применения.
- •Пьезоэффект
- •Функциональные возможности и особенности работы транзисторов.
- •Билет 6
- •Устойчивость сау. Алгебраические критерии устойчивости.
- •Модули дискретного ввода-вывода.
- •Классификация измерительных преобразователей температуры.
- •Вольт-амперные характеристики биполярных, моп- и кмоп- интегральных транзисторов.
- •Билет 7
- •Астатические объекты управления. Динамические характеристики.
- •Функциональные схемы автоматизации: изображения средств управления.
- •Расходомеры постоянного перепада давления. Принцип действия, область применения.
- •Триггеры. Особенности работы, назначение.
- •Билет 8
- •Структурная схема сау с обратной связью. Назначение элементов.
- •Человеко-машинный интерфейс как элемент системы управления.
- •Емкостные измерительные преобразователи. Емкостные электромеханические преобразователи
- •Тиристоры. Вольт-амперные характеристики тиристоров.
- •Билет 9
- •Устойчивость систем управления. Теорема Ляпунова для линейных систем.
- •Проектирование щитов и стоек.
- •Волновые, акустические и радиоизотопные измерительные преобразователи уровня.
- •Оптроны. Назначение и принципы действия.
- •Обобщенная структурная схема
- •Билет 10
- •Классификация принципов регулирования. Регулирование по отклонению.
- •Интегрированные системы управления.
- •Чувствительность, точность и погрешности измерительных преобразователей.
- •Сглаживающие фильтры. Стабилизаторы напряжения.
- •Билет 11
- •Комбинированный (замкнуто-разомкнутый) принцип регулирования.
- •1.Разомкнутые,замкнутые и комбинированные системы управления.
- •Автоматизированное рабочее место оператора-технолога.
- •Системы автоматического контроля.
- •Оптоэлектронные полупроводниковые и интегральные приборы и устройства.
- •Билет 12
- •Динамические характеристики систем управления с пид-регулятором.
- •Внешние электрические и трубные проводки.
- •Внешние электрические и трубные проводки.
- •14.1 Общие положения
- •14.2 Выбор способа выполнения электропроводок
- •14.3 Выбор проводов и кабелей
- •15.1 Общие положения
- •15.2 Требования к трубным проводкам
- •Основные принципы и теоретическая база стандартизации.
- •Логические цифровые устройства на интегральных схемах.
- •Логические цифровые устройства на интегральных схемах.
- •Билет 13
- •Критерий устойчивости Михайлова.
- •Назначение концентратов и сетевых адаптеров в локальных сетях.
- •Принципиальная схема симметричного триггера на биполярных транзисторах.
- •Билет 14
- •Классификация алгоритмов (законов) управления.
- •Методика выбора плк. Требования к эвм, используемых в асутп.
- •Тензорезисторные преобразователи. Принцип действия, назначение.
- •Принцип действия и назначение оптоэлектронной пары.
- •Билет 15
- •Динамические характеристики объектов с самовыравниванием.
- •Схемы взаимодействия компьютера с периферийными устройствами.
- •Методы измерений: непосредственной оценки, сравнения, дифференциальный.
- •Классификация электромеханических реле.
- •Билет 16
- •Типовые законы регулирования.
- •Классификация, функции и характеристики сетевых адаптеров.
- •Методы измерений влажности воздуха и газов.
- •Принцип действия и назначения диодных, резисторных, транзисторных и тиристорных оптоэлектронных пар.
- •Билет 17
- •Динамические характеристики астатических объектов.
- •Характеристики кабелей, применяемых в компьютерных сетях.
- •Компенсационные измерительные схемы.
- •Классификация исполнительных механизмов.
- •Билет 18
- •Устойчивость сау. Амплитудно-фазовой критерий Найквиста.
- •Сравнительная оценка локальных и глобальных вычислительных сетей.
- •Индукционные расходомеры. Принцип действия, область применения.
- •Электродвигательные им.
- •Билет 19
- •Правила преобразования структурных схем управления.
- •Методы организации доступа к линиям связи
- •2. Метод Ethernet
- •3. Метод Archnet
- •Многостанционный доступ частота коммутация
- •4. Метод Token Ring
- •Акустические уровнемеры. Принцип действия, область применения.
- •Электромагнитные исполнительные механизмы.
- •Билет 20
- •Передаточная функция и частотные характеристики усилительного звена.
- •Топология промышленных сетей. Физическая реализация каналов передачи данных. Определение
- •Структура "звезда"
- •Электрические измерительные преобразователи.
- •Гидравлические исполнительные механизмы.
- •Билет 21
- •Передаточная функция и частотные характеристики апериодического звена 1-го порядка.
- •Принципы проектирования схем автоматизации.
- •Методы измерения плотности веществ.
- •Пневматические им.
- •Билет 22
- •Чистое запаздывание. Передаточная функция звена чистого запаздывания.
- •Пример системы с транспортным запаздыванием
- •Передаточная функция имеет вид .
- •Звено чистого запаздывания
- •Принципы построения принципиальных электрических схем.
- •Проводниковые и полупроводниковые термометры сопротивления. Принцип действия и конструктивные формы. Полупроводниковые термометры (терморезисторы, термисторы)
- •Шаговые им.
- •Билет 23
- •Элементарные звенья. Передаточная функция, частотные характеристики интегрирующего звена.
- •3.1. Виды элементарных динамических звеньев
- •Лингвистическое, методическое и организационное обеспечение асу тп.
- •Методы измерения влажности твердых и сыпучих материалов.
- •Релейные исполнительные механизмы.
- •Билет 24
- •Элементарные звенья. Передаточная функция, частотные характеристики дифференцирующего звена.
- •3.1. Виды элементарных динамических звеньев
- •Состав информационного обеспечения асу тп.
- •Методы и средства измерения давления. Деформационные измерительные преобразователи.
- •1.1.4 Деформационные измерительные преобразователи давления, основанные на методе прямого преобразования
- •1.1.4.1 Индуктивные измерительные преобразователи давления.
- •Дифференциально-трансформаторные измерительные преобразователи давления.
- •1.1.4.3 Емкостные измерительные преобразователи давления.
- •Тензорезисторные измерительные преобразователи давления.
- •1.1.4.5 Пьезоэлектрические измерительные преобразователи давления.
- •Логические цифровые устройства на интегральных микросхемах.
- •Билет 25
- •Качество сау. Запас устойчивости.
- •1 Понятие запаса устойчивости
- •Состав аппаратного обеспечения асутп.
- •Аппаратное обеспечение
- •Принцип действия и назначение импульсных трансформаторов.
- •Описание
- •Виды импульсных трансформаторов
- •Билет 26
- •Показатели качества переходных процессов.
- •Математическое и программное обеспечение асутп.
- •Термоэлектрические преобразователи температуры.
- •Тиристоры. Вольт-амперные характеристики тиристоров.
- •Билет 27
- •Классификация принципов регулирования. Принцип регулирования по возмущению.
- •Разомкнутые системы:
- •Замкнутые системы:
- •Структурная схема асутп. Локальные системы управления.
- •Измерительные преобразователи для измерения количества жидкостей, газа, пара и единиц продукции.
- •Тиристорный электропривод двигателей постоянного тока.
- •Билет 28
- •Классификация систем управления по виду управляющих воздействий.
- •Организация проектирования локальных систем управления.
- •Правила выполнения структурных электрических схем.
- •Классификация транзисторов по типам и группам.
- •Билет 29
- •Виды запаздываний объектов управления. Звено чистого запаздывания.
- •Звено чистого запаздывания
- •Техническое задание на проектирование.
- •Электрические методы измерения уровня жидких и сыпучих сред.
- •Классификация регулирующих органов по принципу действия. Дозаторы.
- •Билет 30
- •Моделирование технологических процессов. Виды моделей.
- •Изображение технологического оборудования и коммуникаций на схемах автоматизации.
- •Измерения. Виды и методы измерений.
- •4.1Виды измерений
- •Классификация и основные характеристики электромагнитных муфт.
Логические цифровые устройства на интегральных схемах.
Логические цифровые устройства на интегральных схемах.
Техническая реализация логической функции предполагает построение цифрового устройства, сигналы на выходе которого определяются сигналами на его входах в соответствии с этой функцией. Для построения цифрового устройства достаточно иметь элементы, реализующие три основные логические операции И, ИЛИ и НЕ. На практике также используют элементы, выполняющие другие простейшие логические операции. Такие элементы называют логическими. Если соединить логические элементы в соответствии со структурой выражения для логической функции, то получим цифровое устройство, реализующее заданную логическую функцию. Логический элемент может быть реализован в виде интегральной схемы. Часто интегральная схема содержит несколько логических элементов.
1.По условию работы устройства определяется, что именно должно делать устройство, и уточняется алгоритм его работы.
2.Составляется таблица истинности для логической функции, реализуемой устройством.
3.Составляется логическая функция и проводится ее минимизация.
4.Разрабатывается схема проектируемого устройства.
Особенности построения логических устройств:
Обычно при построении логических устройств, с целью сокращения номенклатуры используемых логических элементов, используют либо два элемента, выполняющие операции И-НЕ и ИЛИ-НЕ, либо только один из этих элементов.
Р
еализация
логических функций
Техническая реализация логической функции предполагает построение цифрового устройства, сигналы на выходе которого определяются сигналами на его входах в соответствии с этой функцией. Для построения цифрового устройства достаточно иметь элементы, реализующие три основные логические операции И, ИЛИ и НЕ. На практике также используют элементы, выполняющие другие простейшие логические операции. Такие элементы называют логическими. Их называют также логическими вентилями. Если соединить логические элементы в соответствии со структурой выражения для логической функции, то получим цифровое устройство, реализующее заданную логическую функцию Логический элемент может быть реализован в виде интегральной схемы. Часто интегральная схема содержит несколько логических элементов.
На рис. 3.34 приведены примеры условных графических обозначений некоторых логических элементов, булево выражение реализуемой логической функции и их таблицы истинности.
При проектировании цифрового устройства рекомендуется поступать следующим образом:
По условию работы устройства определяется, что именно должно делать устройство, и уточняется алгоритм его работы.
Составляется таблица истинности для логической функции, реализуемой устройством.
Составляется логическая функция и проводится ее минимизация.
Разрабатывается схема проектируемого устройства.
ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ Классификация и основные параметры
В настоящее время наиболее широко используются следующие логики: транзисторно-транзисторная логика (ТТЛ), транзисторно-транзисторная логика с диодами Шоттки (ТТЛШ), логика на основе комплементарных ключей (КМОП), эмиттерно-связанная логика (ЭСЛ). Логические элементы и другие цифровые электронные устройства выпускаются в составе серий микросхем. Серия микросхем — это совокупность микросхем, характеризуемых общими технологическими и схемотехническими решениями, а также уровнями электрических сигналов и напряжения питания.
Шифраторы, дешифраторы и преобразователи кодов. Шифратор — это комбинационное устройство, преобразующее десятичные числа в двоичную систему счисления, причем каждому входу может быть поставлено в соответствие десятичное число, а набор выходных логических сигналов соответствует определенному двоичному коду
Основное назначение шифратора — преобразование номера источника сигнала в код (например, номера нажатой кнопки некоторой клавиатуры).
ИНТЕГРАЛЬНЫЕ СХЕМЫ АЛУ
В настоящее время практически все АЛУ выполняются в интегральном исполнении и промышленностью выпускаются различные серии соответствующих ИС.
КЛАССИФИКАЦИЯ ЛОГИЧЕСКИХ УСТРОЙСТВ
Логические устройства могут быть классифицированы по разным признакам. Они подразделяются на последовательные, параллельные последовательно-параллельные (смешанные). Ь Последовательным называется устройство, в которое входные временные подаются на вход, а выходные переменные снимаются с выхода не одновременно, а последовательно.
Параллельным называется устройство, в котором все разряды переменных подаются на вход, и все разряды выходных времённых снимаются с выхода одновременно. В последовательно-параллельных устройствах входные и выходные переменные представлены в различных формах. Либо на переменные подаются последовательно символ за символом, а с выхода они снимаются одновременно, либо наоборот.