
- •Билет № 1
- •1. Критерий устойчивости Найквиста
- •Механические измерительные преобразователи.
- •Оптоэлектронный переключатель. Принцип действия, область применения.
- •Билет 2
- •Классификация су по принципу управления (управление по возмущению, по отклонению, комбинированные системы).
- •Иерархический и декомпозиционный принципы проектирования.
- •Государственная система приборов и средств автоматизации. Характеристика ветвей гсп.
- •. Триодные и диодные тиристоры. Назначение, принцип действия.
- •. Технологические процессы как объекты автоматического управления. Возмущения, управляющие воздействия, входы и выходы. Обобщенная структурная схема.
- •Схемы взаимодействия компьютеров с периферийными устройствами.
- •1.2.1. Связь компьютера с периферийными устройствами
- •Электромагнитные измерительные преобразователи.
- •Назначение и схемы ацп.
- •Линейные и нелинейные сау. Методы линеаризации статических характеристик нелинейных объектов.
- •Классификация плк. Моноблочные контроллеры. Модульные контроллеры. Pc-base контроллеры.
- •Емкостные измерительные преобразователи. Емкостные электромеханические преобразователи
- •Назначение и схемы цап.
- •Билет 5
- •Статические и астатические объекты управления.
- •Состав математического и программного обеспечения асу тп.
- •Пьезоэлектрические измерительные преобразователи. Принцип действия, область применения.
- •Пьезоэффект
- •Функциональные возможности и особенности работы транзисторов.
- •Билет 6
- •Устойчивость сау. Алгебраические критерии устойчивости.
- •Модули дискретного ввода-вывода.
- •Классификация измерительных преобразователей температуры.
- •Вольт-амперные характеристики биполярных, моп- и кмоп- интегральных транзисторов.
- •Билет 7
- •Астатические объекты управления. Динамические характеристики.
- •Функциональные схемы автоматизации: изображения средств управления.
- •Расходомеры постоянного перепада давления. Принцип действия, область применения.
- •Триггеры. Особенности работы, назначение.
- •Билет 8
- •Структурная схема сау с обратной связью. Назначение элементов.
- •Человеко-машинный интерфейс как элемент системы управления.
- •Емкостные измерительные преобразователи. Емкостные электромеханические преобразователи
- •Тиристоры. Вольт-амперные характеристики тиристоров.
- •Билет 9
- •Устойчивость систем управления. Теорема Ляпунова для линейных систем.
- •Проектирование щитов и стоек.
- •Волновые, акустические и радиоизотопные измерительные преобразователи уровня.
- •Оптроны. Назначение и принципы действия.
- •Обобщенная структурная схема
- •Билет 10
- •Классификация принципов регулирования. Регулирование по отклонению.
- •Интегрированные системы управления.
- •Чувствительность, точность и погрешности измерительных преобразователей.
- •Сглаживающие фильтры. Стабилизаторы напряжения.
- •Билет 11
- •Комбинированный (замкнуто-разомкнутый) принцип регулирования.
- •1.Разомкнутые,замкнутые и комбинированные системы управления.
- •Автоматизированное рабочее место оператора-технолога.
- •Системы автоматического контроля.
- •Оптоэлектронные полупроводниковые и интегральные приборы и устройства.
- •Билет 12
- •Динамические характеристики систем управления с пид-регулятором.
- •Внешние электрические и трубные проводки.
- •Внешние электрические и трубные проводки.
- •14.1 Общие положения
- •14.2 Выбор способа выполнения электропроводок
- •14.3 Выбор проводов и кабелей
- •15.1 Общие положения
- •15.2 Требования к трубным проводкам
- •Основные принципы и теоретическая база стандартизации.
- •Логические цифровые устройства на интегральных схемах.
- •Логические цифровые устройства на интегральных схемах.
- •Билет 13
- •Критерий устойчивости Михайлова.
- •Назначение концентратов и сетевых адаптеров в локальных сетях.
- •Принципиальная схема симметричного триггера на биполярных транзисторах.
- •Билет 14
- •Классификация алгоритмов (законов) управления.
- •Методика выбора плк. Требования к эвм, используемых в асутп.
- •Тензорезисторные преобразователи. Принцип действия, назначение.
- •Принцип действия и назначение оптоэлектронной пары.
- •Билет 15
- •Динамические характеристики объектов с самовыравниванием.
- •Схемы взаимодействия компьютера с периферийными устройствами.
- •Методы измерений: непосредственной оценки, сравнения, дифференциальный.
- •Классификация электромеханических реле.
- •Билет 16
- •Типовые законы регулирования.
- •Классификация, функции и характеристики сетевых адаптеров.
- •Методы измерений влажности воздуха и газов.
- •Принцип действия и назначения диодных, резисторных, транзисторных и тиристорных оптоэлектронных пар.
- •Билет 17
- •Динамические характеристики астатических объектов.
- •Характеристики кабелей, применяемых в компьютерных сетях.
- •Компенсационные измерительные схемы.
- •Классификация исполнительных механизмов.
- •Билет 18
- •Устойчивость сау. Амплитудно-фазовой критерий Найквиста.
- •Сравнительная оценка локальных и глобальных вычислительных сетей.
- •Индукционные расходомеры. Принцип действия, область применения.
- •Электродвигательные им.
- •Билет 19
- •Правила преобразования структурных схем управления.
- •Методы организации доступа к линиям связи
- •2. Метод Ethernet
- •3. Метод Archnet
- •Многостанционный доступ частота коммутация
- •4. Метод Token Ring
- •Акустические уровнемеры. Принцип действия, область применения.
- •Электромагнитные исполнительные механизмы.
- •Билет 20
- •Передаточная функция и частотные характеристики усилительного звена.
- •Топология промышленных сетей. Физическая реализация каналов передачи данных. Определение
- •Структура "звезда"
- •Электрические измерительные преобразователи.
- •Гидравлические исполнительные механизмы.
- •Билет 21
- •Передаточная функция и частотные характеристики апериодического звена 1-го порядка.
- •Принципы проектирования схем автоматизации.
- •Методы измерения плотности веществ.
- •Пневматические им.
- •Билет 22
- •Чистое запаздывание. Передаточная функция звена чистого запаздывания.
- •Пример системы с транспортным запаздыванием
- •Передаточная функция имеет вид .
- •Звено чистого запаздывания
- •Принципы построения принципиальных электрических схем.
- •Проводниковые и полупроводниковые термометры сопротивления. Принцип действия и конструктивные формы. Полупроводниковые термометры (терморезисторы, термисторы)
- •Шаговые им.
- •Билет 23
- •Элементарные звенья. Передаточная функция, частотные характеристики интегрирующего звена.
- •3.1. Виды элементарных динамических звеньев
- •Лингвистическое, методическое и организационное обеспечение асу тп.
- •Методы измерения влажности твердых и сыпучих материалов.
- •Релейные исполнительные механизмы.
- •Билет 24
- •Элементарные звенья. Передаточная функция, частотные характеристики дифференцирующего звена.
- •3.1. Виды элементарных динамических звеньев
- •Состав информационного обеспечения асу тп.
- •Методы и средства измерения давления. Деформационные измерительные преобразователи.
- •1.1.4 Деформационные измерительные преобразователи давления, основанные на методе прямого преобразования
- •1.1.4.1 Индуктивные измерительные преобразователи давления.
- •Дифференциально-трансформаторные измерительные преобразователи давления.
- •1.1.4.3 Емкостные измерительные преобразователи давления.
- •Тензорезисторные измерительные преобразователи давления.
- •1.1.4.5 Пьезоэлектрические измерительные преобразователи давления.
- •Логические цифровые устройства на интегральных микросхемах.
- •Билет 25
- •Качество сау. Запас устойчивости.
- •1 Понятие запаса устойчивости
- •Состав аппаратного обеспечения асутп.
- •Аппаратное обеспечение
- •Принцип действия и назначение импульсных трансформаторов.
- •Описание
- •Виды импульсных трансформаторов
- •Билет 26
- •Показатели качества переходных процессов.
- •Математическое и программное обеспечение асутп.
- •Термоэлектрические преобразователи температуры.
- •Тиристоры. Вольт-амперные характеристики тиристоров.
- •Билет 27
- •Классификация принципов регулирования. Принцип регулирования по возмущению.
- •Разомкнутые системы:
- •Замкнутые системы:
- •Структурная схема асутп. Локальные системы управления.
- •Измерительные преобразователи для измерения количества жидкостей, газа, пара и единиц продукции.
- •Тиристорный электропривод двигателей постоянного тока.
- •Билет 28
- •Классификация систем управления по виду управляющих воздействий.
- •Организация проектирования локальных систем управления.
- •Правила выполнения структурных электрических схем.
- •Классификация транзисторов по типам и группам.
- •Билет 29
- •Виды запаздываний объектов управления. Звено чистого запаздывания.
- •Звено чистого запаздывания
- •Техническое задание на проектирование.
- •Электрические методы измерения уровня жидких и сыпучих сред.
- •Классификация регулирующих органов по принципу действия. Дозаторы.
- •Билет 30
- •Моделирование технологических процессов. Виды моделей.
- •Изображение технологического оборудования и коммуникаций на схемах автоматизации.
- •Измерения. Виды и методы измерений.
- •4.1Виды измерений
- •Классификация и основные характеристики электромагнитных муфт.
Чувствительность, точность и погрешности измерительных преобразователей.
Чувствительность
измерительного прибора (коэффициент
преобразования измерительного
преобразователя) определяется как
отношение приращения выходного сигнала
D Y на выходе измерительного прибора
(преобразователя) к вызвавшему это
приращение изменению входного сигнала
DХ (входного сигнала преобразователя).
В общем случае чувствительность
определяется как
и называется абсолютной чувствительностью.
Эта величина является размерной и
зависит от единиц, в которых выражаются
X и Y .Для линейной градуировочной
характеристики чувствительность S =
const, для нелинейных характеристик
чувствительность является переменной
величиной, различной для разных значений
Х .
В
практике пользуются относительной
чувствительностью
Применяют
также выражение относительной
чувствительности в виде
,
выражая числитель и знаменатель чаще
всего в процентах (например, 1 % изменения
вызывает изменение Y на n
%). Отметим, что S00 - величина безразмерная.
Для измерительных приборов и мер с переменным значением часто вместо чувствительности указывают цену деления шкалы. Цена деления представляет собой разность значений величины, соответствующих двум соседним отметкам шкалы. Цена деления есть величина, обратная чувствительности. Она имеет размерность измеряемой величины. В приборах с линейной градуировочной характеристикой цена деления постоянна в диапазоне измерений и носит название - постоянная прибора. Для получения значения величины в соответствующих единицах надо умножить отсчет в делениях на постоянную прибора.
Точность средства измерений есть качество средства измерений, отражающее близость нулю его погрешностей. Чем меньшие погрешности имеет средство измерений, тем оно считается более точным. Для всех средств измерений указываются метрологические характеристики погрешностей. Они включают в себя: характеристики систематической составляющей погрешности, случайной составляющей, а также вариации выходного сигнала. В соответствии с ГОСТ 8.009 - 84 нормирование характеристик погрешностей производится на основе методов математической статистики.
Основная погрешность. Она обусловлена неидеальностью собственных свойств средств измерений и показывает отличие действительной функции преобразования средств измерений в нормальных условиях от номинальной функции преобразования.
По способу числового выражения основной погрешности различают абсолютную, относительную и приведенную погрешности.
Абсолютная погрешность измерительного прибора - разность между показанием прибора Хп и истинным значением Хи измеряемой величины:
DХ = Хп – Хи.
Абсолютная погрешность, взятая с обратным знаком, называется поправкой:
П = - DХ .
Под абсолютной погрешностью меры DХ понимается разность между номинальным значением меры Хн и действительным значением воспроизводимой ею величины Хд :
DХ = Хн—Хд .
Относительная
погрешность измерительного прибора в
процентах - отношение абсолютной
погрешности к истинному значению
измеряемой величины:
.
Относительная погрешность обычно
существенно изменяется вдоль шкалы
аналогового прибора, с уменьшением
значений измеряемой величины
-увеличивается.
Если диапазон измерения прибора охватывает и нулевое значение измеряемой величины, то относительная погрешность обращается в бесконечность в соответствующей ему точке шкалы. В этом случае пользуются понятием приведенной погрешности.
Приведенная
погрешность измерительного прибора в
процентах - отношение абсолютной
погрешности к нормирующему значению
ХN :
.
Основная погрешность прибора - погрешность при нормальных условиях использования прибора. Нормальные условия эксплуатации зависят от назначения прибора и его метрологических характеристик. Для основной массы приборов, используемых в промышленности, нормальными условиями эксплуатации СИ считаются : температура окружающего воздуха (20±5) °С; относительная влажность 30-80 %; атмосферное давление 630-795 мм рт. ст.; напряжение питающей сети (220+4,4) В; частота питающей сети (50±0,5) Гц.
Дополнительные погрешности нормируются указанием коэффициентов влияния изменения отдельных влияющих величин на изменение показаний в виде: yq , % / 10 К - коэффициент влияния от изменения температуры на 10 К; yU, % / (10 % DU/U) – коэффициент влияния от изменения напряжения питания на 10 % и т. д. Хотя фактически эти функции влияния влияющих факторов, как правило, нелинейны, для простоты вычислений их приближенно считают линейными и возникающие дополнительные погрешности определяют как gдоп = y×Dq, где y - коэффициент влияния; Dq - отклонение от нормальных условий.
Погрешность прибора в реальных условиях его эксплуатации называется эксплуатационной и складывается из его основной погрешности и всех дополнительных и может быть, естественно, много больше его основной погрешности. Таким образом, деление погрешностей на основную и дополнительные является чисто условным и оговаривается в технической документации на каждое средство измерений.
Погрешность, обусловленная взаимодействием средств измерений и объекта измерения. Подключение средства измерений к объекту измерений во многих случаях приводит к изменению значения измеряемой величины относительно того значения, которое она имела до подключения средства измерения к объекту измерений и определение которого является целью измерений. Эта составляющая зависит от свойств средства измерений и объекта измерений.
В тех случаях, когда средство измерения используется для измерения постоянной или переменной во времени величины для его характеристики используют понятия статической и динамической погрешностей.
Статическая погрешность - это погрешность средства измерения, используемого для измерения постоянной величины. Например, погрешности, возникающие при измерении постоянного напряжения или частоты генератора образцовых частот, являются статическими погрешностями.
Динамическая погрешность. Динамическая погрешность средства измерения - это разность между погрешностью средства измерений в динамическом режиме и его статической погрешностью, соответствующей значению величины в данный момент времени. Она обусловлена реакцией средства измерения на скорость (частоту) изменения входного сигнала. Эта погрешность зависит от динамических свойств (инерционности) средства измерения, частотного спектра входного сигнала, изменений нагрузки и влияющих величин. На выходной сигнал средства измерений влияют значения входного сигнала и любые изменения его во времени. Различают полную и частную динамические характеристики.
Полная динамическая характеристика — характеристика, полностью описывающая принятую математическую модель динамических свойств средства измерений и однозначно определяющая изменение выходного сигнала средства измерений при любом изменении во времени информативного или неинформативного параметра входного сигнала или влияющей величины. Полную динамическую характеристику аналоговых средств измерений выбирают из следующих характеристик: дифференциального уравнения, передаточной функции, импульсной и переходной характеристик, амплитудно-фазовой, амплитудно-частотной характеристик.
При линейном, экспоненциальном и прямолинейном изменении входной величины для нахождения динамической погрешности используют операторную форму записи.