
- •1. Уравнение прямой с угловым коэффициентом.
- •2. Угол между двумя прямыми; условия параллельности и перпендикулярности двух прямых.
- •3. Эллипс, его свойства, каноническое уравнение.
- •4. Гипербола, ее свойства, каноническое уравнение.
- •5. Парабола, ее свойства, каноническое уравнение.
- •6. Операции над комплексными числами, заданными в алгебраической форме.
- •7. Операции над комплексными числами, представленными в показательной форме.
- •8. Разложение многочлена на множители. Основная теорема алгебры.
- •9. Разложение рациональной дроби на сумму простейших дробей.
- •10. Векторы, линейные операции над ними, свойства этих операций.
- •11. Скалярное произведение двух вектором и его свойства.
- •12. Вычисление скалярного произведения двух векторов, заданных координатами.
- •13. Векторное произведение двух векторов и его свойство.
- •18. Элементарные преобразования строк матрицы.
- •19. Ступенчатый вид матрицы, вид Гаусса.
- •20. Обратная матрица, алгоритм построения.
- •21. Определитель, свойства определителя.
- •22. Ранг матрицы.
- •23. Линейная зависимость и независимость векторов. Ранг системы векторов.
- •24. Теорема Кронекера - Капелли.
- •25. Правило Крамера.
- •26. Метод Гаусса для решения системы линейных уравнений.
- •27. Однородная линейная система. Фундаментальная система решений.
1. Уравнение прямой с угловым коэффициентом.
В декартовых координатах каждая прямая определяется уравнением первой степени и, обратно, каждое уравнение первой степени определяет прямую.
Уравнение вида
(1)
называется общим уравнением прямой.
Угол
,
определяемый, как показано на рис.,
называется углом наклона прямой к оси
Ох. Тангенс угла наклона прямой к оси
Ох называется угловым коэффициентом
прямой; его обычно обозначают буквой
k:
Уравнение
называется
уравнением прямой с угловым коэффициентом;
k - угловой коэффициент, b - величина
отрезка, который отсекает прямая на оси
Оу, считая от начала координат.
Если прямая задана общим уравнением
,
то ее угловой коэффициент определяется по формуле
.
Уравнение
является
уравнением прямой, которая проходит
через точку
(
,
)
и имеет угловой коэффициент k.
Если
прямая проходит через точки
(
,
),
(
,
),
то ее угловой коэффициент определяется
по формуле
.
Уравнение
является уравнением прямой, проходящей через две точки ( , ) и ( , ).
2. Угол между двумя прямыми; условия параллельности и перпендикулярности двух прямых.
Если
известны угловые коэффициенты
и
двух
прямых, то один из углов
между
этими прямыми определяется по формуле
.
Признаком параллельности двух прямых является равенство их угловых коэффициентов:
.
Признаком перпендикулярности двух прямых является соотношение
или
.
Иначе говоря, угловые коэффициенты перпендикулярных прямых обратны по абсолютной величине и противоположны по знаку.
3. Эллипс, его свойства, каноническое уравнение.
Эллипс - это
геометрическая фигура, которая ограничена
кривой, заданной уравнением
.
Он имеет два фокуса. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.
F1 , F2 – фокусы . F1 = ( c ; 0); F 2 (- c ; 0)
с – половина расстояния между фокусами;
a – большая полуось;
b – малая полуось.
Теорема. Фокусное расстояние и полуоси связаны соотношением: a2 = b 2 + c 2.
Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом. е = с/ a , т.к. с < a , то е < 1.
Определение. Величина k = b / a называется коэффициентом сжатия , а величина 1 – k = ( a – b )/ a называется сжатием.
Коэффициент сжатия и эксцентриситет связаны соотношением: k2 = 1 – e 2 .
Если a = b ( c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.
Если для
точки М(х 1 , у 1 ) выполняется
условие:
,
то она находится внутри эллипса, а
если
,
то точка находится вне его.
Теорема. Для произвольной точки М(х, у), принадлежащей фигуре эллипс верны соотношения :
r 1 = a – ex , r2 = a + ex .
С фигурой эллипс связаны две прямые, называемые директрисами. Их уравнения: x = a / e ; x = - a / e .
Теорема. Для того, чтобы точка лежала на границе фигуры эллипс, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.
Пример.
Составить уравнение
прямой, проходящей через левый
фокус и нижнюю вершину фигуры эллипс,
заданного уравнением :
• Координаты нижней вершины: x = 0; y2 = 16; y = -4.
• Координаты левого фокуса: c2 = a 2 – b2 = 25 – 16 = 9; c = 3; F2 (-3; 0).
• Уравнение прямой, проходящей через две точки:
Пример. Составить уравнение границы фигуры эллипс, если его фокусы F 1 (0; 0), F2 (1; 1), большая ось равна 2.
Уравнение границы имеет вид: . Расстояние между фокусами:
2 c =
,
таким образом, a2 – b2 = c2 = 1/2
по условию
2а = 2, следовательно а = 1, b =
Итого искомое
уравнение имеет вид:
.