- •2) Центральное и параллельное проецирование.
- •3) Инвариантные свойства параллельного проецирования
- •4)Метод Монжа
- •5)Положение точки в различных четвертях пространства
- •6) Положение прямой линии относительно плоскостей проекций
- •7) Прямые уровня. Свойства эпюра прямых уровня
- •8)Проецирующие прямые. Свойства эпюра прямых уровня.
- •9)Следы прямой линии
- •10)Деление отрезка в заданном отношении
- •12) Определение натуральной величины отрезка прямой. Способ прямоугольного треугольника.
- •13) Взаимное положение прямых линий. Способ конкурирующих точек.
- •14)Различные способы задания плоскости на чертеже
- •16)Проецирующие плоскости и их свойства
- •17)Плоскости уровня и их свойства
- •18)Следы плоскости
- •19)Принадлежность прямой и точки плоскости
- •20)Главные линии плоскости
- •21) Линии наибольшего наклона плоскости к плоскости проекций
- •22)Пересечение прямой с плоскостью. Общий алгоритм решения
- •23) Общий случай пересечения плоскостей
- •24)Параллельность прямой и плоскости
- •25) Параллельность двух плоскостей
- •26) Теорема о частном случае проецирования прямого угла
- •27)Перпендикулярность прямой и плоскости
- •28) Перпендикулярность двух плоскостей
- •29)Сущность преобразования проекций. Характеристика способов преобразования ортогональных проекций
- •30) Способ замены плоскостей проекций
- •31)Способ вращения вокруг проецирующих прямых и прямых уровня
- •32) Способ плоскопараллельного перемещения.
- •34) Гранные поверхности. Образование.
- •35)Точка и прямая на поверхности многогранника
- •36) Пересечение многогранника проецирующей плоскостью
- •37)Пересечение многогранника плоскостью общего положения
- •38) Пересечение прямой линии с многогранником. Общий алгоритм решения задачи.
- •39) Пересечение многогранников. Способ ребер. Способ граней.
- •40) Поверхности вращения.Образования
- •41)Точка на поверхности вращения. Определение видимости.
- •42) Пересечение поверхности тел вращения проецирующей плоскостью
- •43)Конические сечения. Примеры построения конических сечений
- •44)Цилиндрические сечения.
- •45)Пересечение поверхности вращения плоскостью общего положения
- •46) Пересечение прямой линии с поверхностью вращения
- •47)Пересечение поверхностей. Способ вспомогательных секущих плоскостей. План решения задачи.
- •48)Соосные поверхности. Пересечение соосных поверхностей.
- •49)Пересечение поверхностей. Способ вспомогательных концентрических сфер. План решения задачи.
- •50) Частные случаи пересечения поверхностей. Теорема о двойном касании. Теорема Монжа.
- •51) Построение развертки пирамиды способом треугольника (триангуляции)
- •52) Построение развертки способом нормального сечения.
- •54)Построение аксонометрических проекций точки, прямой, плоскости
18)Следы плоскости
Следом плоскости называется линия пересечения плоскости с плоскостью проекций. В зависимости, от того с какой из плоскостей проекций пересекается данная плоскость, различают: горизонтальный, фронтальный и профильный следы плоскости.
Каждый след плоскости является прямой линией, для построения которых необходимо знать две точки, либо одну точку и направление прямой (как для построения любой прямой). На рисунке 52 показано нахождение следов плоскости α(АВС). Фронтальный след плоскости αП2 построен, как прямая соединяющая две точки N(АС) и N(АВ), являющиеся фронтальными следами соответствующих прямых, принадлежащих плоскости α. Горизонтальный следαП1 – прямая, проходящая через горизонтальные следы прямых ВС и АВ. Профильный след αП3 – прямая соединяющая точки (αy и αz) пересечения горизонтального и фронтального следов с осями. Точки αx, αy и αz называют точками схода следов.
|
|
|
|
|
|||
|
|||
|
|||
Рисун 52. Построение следов плоскости |
|||
19)Принадлежность прямой и точки плоскости
Прямая и точка в плоскости
В пространстве прямая может либо принадлежать плоскости, либо не принадлежать плоскости. Это утверждение справедливо и для точки. Прямая принадлежит плоскости, если она проходит:
• Через две точки, принадлежащие плоскости;
• Через точку плоскости параллельно любой прямой этой плоскости.
Точка принадлежит плоскости, если она расположена на прямой (кривой), лежащей в данной плоскости.
Прямые общего положения в плоскости
Пусть нам дан ортогональный чертёж плоскости a - общего положения, заданной двумя пересекающимися прямыми а и b. Чтобы построить прямую, принадлежащую данной плоскости, необходимо выполнить одно из вышеперечисленных условий. На прямых a и b возьмём две точки А и В и проведём прямую f через эти точки. Прямая f принадлежит плоскости a, т. к. она проходит через две точки, принадлежащие данной плоскости.
Если мы отметим на прямой f точки С и D, то они так же будут принадлежать плоскости a, т. к. они принадлежат прямой, лежащей в данной плоскости.
20)Главные линии плоскости
Горизонталь – прямая, лежащая в заданной плоскости и параллельная П1.
h0 – нулевая горизонталь
h10║h1
h0║h
h20║h2
Все горизонтали плоскости параллельны между собой и параллельны нулевой горизонтали (т.е. горизонтальному следу).
Фронталь – прямая, лежащая в заданной плоскости и параллельная П2
Все фронтали плоскости параллельны между собой и параллельны нулевой фронтали (т.е. фронтальному следу).
21) Линии наибольшего наклона плоскости к плоскости проекций
Прямые, принадлежащие плоскости и перпендикулярные горизонталям, фронталям или профильным прямым этой плоскости, называются линиями наибольшего наклона.
Свойства линии ската:
1) Линия ската на наклонной плоскости есть линия, наибольшего наклона по отношению к горизонтальной плоскости проекций. (Из неравенства: ).
2) Линия ската (линия наибольшего наклона) определяет угол наклона плоскости к горизонтальной плоскости проекций. (Из определения двугранного угла с учетом теоремы о проецировании прямого угла).
3) Линия ската перпендикулярна к горизонталям на наклонной плоскости по отношению к плоскости проекций. (Из условия параллельности любой горизонтали по отношению к линии пересечения наклонной плоскости с плоскости горизонтальной проекций: ).
По аналогии можно говорить о линиях наибольшего наклона относительно и других плоскостей проекций.
α(A,1,2)
h- горизонталь плоскости
АМ┴ h – Линия наибольшего наклона к Н
Линии наибольшего наклона определяют наклон плоскости α к плоскости проекции Н0
Пример: Построить Линию наибольшего наклона определить угол наклона α плоскости к плоскости проекции Н.
AK┴H
• Прямая принадлежащая плоскости и перпендикуляр к её фронтали, называется линией наибольшего наклона к плоскости V.
h- горизонталь плоскости
υ- Фронталь плоскости
AК┴ υ
Как видно, Линия наибольшего наклона позволяет определить углы наклона плоскостей общего положения к плоскостям проекций V и H
