- •2) Центральное и параллельное проецирование.
- •3) Инвариантные свойства параллельного проецирования
- •4)Метод Монжа
- •5)Положение точки в различных четвертях пространства
- •6) Положение прямой линии относительно плоскостей проекций
- •7) Прямые уровня. Свойства эпюра прямых уровня
- •8)Проецирующие прямые. Свойства эпюра прямых уровня.
- •9)Следы прямой линии
- •10)Деление отрезка в заданном отношении
- •12) Определение натуральной величины отрезка прямой. Способ прямоугольного треугольника.
- •13) Взаимное положение прямых линий. Способ конкурирующих точек.
- •14)Различные способы задания плоскости на чертеже
- •16)Проецирующие плоскости и их свойства
- •17)Плоскости уровня и их свойства
- •18)Следы плоскости
- •19)Принадлежность прямой и точки плоскости
- •20)Главные линии плоскости
- •21) Линии наибольшего наклона плоскости к плоскости проекций
- •22)Пересечение прямой с плоскостью. Общий алгоритм решения
- •23) Общий случай пересечения плоскостей
- •24)Параллельность прямой и плоскости
- •25) Параллельность двух плоскостей
- •26) Теорема о частном случае проецирования прямого угла
- •27)Перпендикулярность прямой и плоскости
- •28) Перпендикулярность двух плоскостей
- •29)Сущность преобразования проекций. Характеристика способов преобразования ортогональных проекций
- •30) Способ замены плоскостей проекций
- •31)Способ вращения вокруг проецирующих прямых и прямых уровня
- •32) Способ плоскопараллельного перемещения.
- •34) Гранные поверхности. Образование.
- •35)Точка и прямая на поверхности многогранника
- •36) Пересечение многогранника проецирующей плоскостью
- •37)Пересечение многогранника плоскостью общего положения
- •38) Пересечение прямой линии с многогранником. Общий алгоритм решения задачи.
- •39) Пересечение многогранников. Способ ребер. Способ граней.
- •40) Поверхности вращения.Образования
- •41)Точка на поверхности вращения. Определение видимости.
- •42) Пересечение поверхности тел вращения проецирующей плоскостью
- •43)Конические сечения. Примеры построения конических сечений
- •44)Цилиндрические сечения.
- •45)Пересечение поверхности вращения плоскостью общего положения
- •46) Пересечение прямой линии с поверхностью вращения
- •47)Пересечение поверхностей. Способ вспомогательных секущих плоскостей. План решения задачи.
- •48)Соосные поверхности. Пересечение соосных поверхностей.
- •49)Пересечение поверхностей. Способ вспомогательных концентрических сфер. План решения задачи.
- •50) Частные случаи пересечения поверхностей. Теорема о двойном касании. Теорема Монжа.
- •51) Построение развертки пирамиды способом треугольника (триангуляции)
- •52) Построение развертки способом нормального сечения.
- •54)Построение аксонометрических проекций точки, прямой, плоскости
3) Инвариантные свойства параллельного проецирования
Некоторые геометрические свойства фигур остаются неизменными в процессе проецирования. Такие свойства геометрических фигур называются независимыми или инвариантными для данного аппарата проецирования.
Рассмотрим основные инвариантные свойства параллельного проецирования.
1. Проекция точки есть точка.
Это очевидно из самого определения проекции как точки пересечения проецирующей прямой с плоскостью.
2. Проекция прямой есть прямая.
3. Если точка К принадлежит прямой а, то и проекция этой точки принадлежит проекции прямой.
4. Если точка К делит отрезок АВ в отношении т : п то и проекция этой точки делит в таком же отношении проекцию этого отрезка.
5. Проекция точки пересечения прямых есть точка пересечения проекций этих прямых.
6. Проекции параллельных прямых параллельны
7. Плоский многоугольник в общем случае проецируется в многоугольник с тем же числом вершин.
Исключение составляет многоугольник (плоская ломаная или кривая линия), расположенный в проецирую-
щей (лучевой) плоскости. Такой многоугольник проецируется в прямую линию.
8. Прямая, параллельная направлению проецирования, проецируется в точку.
9. Проекция плоской фигуры, параллельной плоскости проекций, конгруэнтна этой фигуре.
Следствия этого инвариантного свойства следующие.
9.1. Проекция отрезка прямой, параллельной плоскости проекций, конгруэнтна и параллельна самому отрезку.
9.2. Проекция угла, стороны которого параллельны плоскости проекций, конгруэнтна этому углу.
4)Метод Монжа
Данный метод позволяет определить место каждой точки изображения относительно других точек.
Точку (предмет) помещают в систему двух взаимоперпендикулярных плоскостей, которые используются в качестве плоскостей проекций.
П1 – горизонтальная плоскость проекций;
П2 – фронтальная плоскость проекций;
х – ось проекций: х = П1 ∩ П2.
Плоскости проекций П1, П2 делят пространство на четыре части, называемые четвертями. Точка А находится в I четверти пространства. Проведя перпендикуляры к П1 (A Î s’ ┴ П1 , A1 = s’ ∩ П1) и П2 (A Î s” ┴ П2 , A2 = s” ∩ П2) , получаем проекции точки А (рис.4):
А1 – горизонтальная проекция точки А,
А2 – фронтальная проекция точки А.
Если даны проекции А1 и А2 некоторой точки А, то проведя перпендикуляры: через т.А1 к плоскости П1 (s’ ┴ П1), а через т. А2 к П2 (s” ┴ П2) , получим в пересечении этих прямых определенную точку А (s’ ∩ s” = A) (рис.5).
Вывод: Две проекции точки вполне определяют ее положение в пространстве относительно данной системы плоскостей проекций.
Вращением вокруг оси Ох плоскость П1 совместим с плоскостью П2. При этом проекции А2 и А1 точки А расположатся на одном перпендикуляре к оси проекций – на линии связи.
Точка в ортогональной системе двух плоскостей проекций
При построении проекции необходимо помнить, что ортогональной проекцией точки на плоскость является основание перпендикуляра, опущенного из данной точки на эту плоскость. На рисунке 7 показана точка А и ее ортогональные проекции А1 и А2, которые называют соответственно горизонтальной и фронтальной проекциями.
Проекции точки всегда расположены на прямой, перпендикулярной оси x12 и пересекающей эту ось в точке А x.
а) модель б) эпюр
Рисунок. 7. Точка в системе двух плоскостей проекций
Справедливо и обратное, т. е. если на плоскостях проекций даны точки А1 и А2 расположенные на прямой, пересекающей ось x12 в точке Аx под прямым углом, то они являются проекцией некоторой точки А.
На эпюре Монжа проекции А1 и А2 расположены на одном перпендикуляре к оси x12. При этом расстояние А1Аx - от горизонтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П2, а расстояние А2Аx - от фронтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П1.
Прямые линии, соединяющие разноименные проекции точки на эпюре, называются линиями проекционной связи.
а) модель б) эпюр
Рисунок 8 Точки в различных четвертях пространства
На рисунке 8 представлены точки A, B, C и D, расположенные в разных четвертях пространства и их эпюр (A - в первой, B - во второй, C - в третьей и D - в четвертой четвертях)
Точка в ортогональной системе трех плоскостей проекций
В практике изображения различных геометрических объектов, чтобы сделать проекционный чертеж более ясным, возникает необходимость использовать третью – профильную плоскость проекций П3, расположенную перпендикулярно к П1 и П2. Плоскости проекций П1, П2 и П3 являются основными плоскостями проекций.
а) модель б) эпюр
Рисунок 9. Точка в системе трех плоскостей проекций
Модель трех плоскостей проекций показана на рисунке 9. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной.
Проекции точек на эту плоскость обозначаются прописными буквами латинского алфавита или цифрами с индексом 3.
Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0.
Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте.
Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают, как показано на рисунке 10, до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают.
Рисунок 10. Получение эпюра
Модель трех плоскостей проекций показана на рисунке 9. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной.
Проекции точек на эту плоскость обозначаются прописными буквами латинского алфавита или цифрами с индексом 3.
Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0.
Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте.
Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают, как показано на рисунке 10, до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают.
Координаты (от лат. со — совместно и ordinatus — упорядоченный, определенный) — числа, заданием которых определяется положение точки на плоскости, на поверхности или в пространстве. В 14 веке Н.Орем пользовался координатами на плоскости для построения графиков, называя долготой и широтой то, что теперь называют абсциссой и ординатой. Более систематически координаты стали применяться к вопросам геометрии на плоскости в 17 веке. Заслуга выяснения всего значения метода координат позволяющего систематически переводить задачи геометрии на язык математического анализа и обратно, истолковывать геометрически факты анализа, принадлежат Р. Декарту.
В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z (абсцисса, ордината и аппликата).
