- •2) Центральное и параллельное проецирование.
- •3) Инвариантные свойства параллельного проецирования
- •4)Метод Монжа
- •5)Положение точки в различных четвертях пространства
- •6) Положение прямой линии относительно плоскостей проекций
- •7) Прямые уровня. Свойства эпюра прямых уровня
- •8)Проецирующие прямые. Свойства эпюра прямых уровня.
- •9)Следы прямой линии
- •10)Деление отрезка в заданном отношении
- •12) Определение натуральной величины отрезка прямой. Способ прямоугольного треугольника.
- •13) Взаимное положение прямых линий. Способ конкурирующих точек.
- •14)Различные способы задания плоскости на чертеже
- •16)Проецирующие плоскости и их свойства
- •17)Плоскости уровня и их свойства
- •18)Следы плоскости
- •19)Принадлежность прямой и точки плоскости
- •20)Главные линии плоскости
- •21) Линии наибольшего наклона плоскости к плоскости проекций
- •22)Пересечение прямой с плоскостью. Общий алгоритм решения
- •23) Общий случай пересечения плоскостей
- •24)Параллельность прямой и плоскости
- •25) Параллельность двух плоскостей
- •26) Теорема о частном случае проецирования прямого угла
- •27)Перпендикулярность прямой и плоскости
- •28) Перпендикулярность двух плоскостей
- •29)Сущность преобразования проекций. Характеристика способов преобразования ортогональных проекций
- •30) Способ замены плоскостей проекций
- •31)Способ вращения вокруг проецирующих прямых и прямых уровня
- •32) Способ плоскопараллельного перемещения.
- •34) Гранные поверхности. Образование.
- •35)Точка и прямая на поверхности многогранника
- •36) Пересечение многогранника проецирующей плоскостью
- •37)Пересечение многогранника плоскостью общего положения
- •38) Пересечение прямой линии с многогранником. Общий алгоритм решения задачи.
- •39) Пересечение многогранников. Способ ребер. Способ граней.
- •40) Поверхности вращения.Образования
- •41)Точка на поверхности вращения. Определение видимости.
- •42) Пересечение поверхности тел вращения проецирующей плоскостью
- •43)Конические сечения. Примеры построения конических сечений
- •44)Цилиндрические сечения.
- •45)Пересечение поверхности вращения плоскостью общего положения
- •46) Пересечение прямой линии с поверхностью вращения
- •47)Пересечение поверхностей. Способ вспомогательных секущих плоскостей. План решения задачи.
- •48)Соосные поверхности. Пересечение соосных поверхностей.
- •49)Пересечение поверхностей. Способ вспомогательных концентрических сфер. План решения задачи.
- •50) Частные случаи пересечения поверхностей. Теорема о двойном касании. Теорема Монжа.
- •51) Построение развертки пирамиды способом треугольника (триангуляции)
- •52) Построение развертки способом нормального сечения.
- •54)Построение аксонометрических проекций точки, прямой, плоскости
31)Способ вращения вокруг проецирующих прямых и прямых уровня
Этот способ является частным случаем способа плоскопараллельного перемещения, когда точка фигуры описывает дугу окружности, плоскость которой также параллельна плоскости проекций.
Графический алгоритм построения точек в способе вращения вокруг проецирующей прямой отличается лишь тем, что здесь траектория движения точки имеет вид окружности, а не произвольной прямой, как в плоскопараллельном проецировании.
Способ вращения вокруг проецирующей прямой более удобен при решении некоторых задач. Найдем с применением этого метода длину отрезка AB. Отрезок AB спроецируется на П2 в натуральную величину, если он будет ей параллелен. Для этого повернем его вокруг оси, проходящей через точку B до состояния параллельности П2, при этом точка A опишет дугу в горизонтальной плоскости.
Алгоритм графических построений:
Проведем ось вращения i через точку B. Ось i перпендикулярна П2;
Повернем отрезок AB до состояния параллельности оси проекций П1П2. Где A1'B1' - новая проекция AB;
Проводим вспомогательную линию на П2. Эта линия символизирует горизонтальную плоскость, в которой поворачивалась точка A;
Проводим линию связи и находим новую проекцию A2'B2' отрезка AB на П2;
A2'B2' - натуральная величина отрезка AB.
Способ вращения вокруг линии уровня
Этот способ применяется в основном для решения задачи преобразования плоскости общего положения в плоскость уровня. Суть способа заключается в том, что плоскость общего положения, поворачивается вокруг прямой уровня до состояния, параллельного горизонтальной плоскости проекций П1 либо фронтальной П2.
Рассмотрим поворот точки А вокруг горизонтали a до уровня горизонтали. Точка А движется по дуге окружности радиуса R с центром в точке O, принадлежащей горизонтали a. Радиус R является гипотенузой прямоугольного треугольника А0А1O, где один катет А1О - горизонтальная проекция радиуса вращения, другой - равен Dz - расстояние между точкой A и прямой a по вертикали. А' - новое положение точки А.
Алгоритм графических построений:
1) Через А1 проводим горизонтальную проекцию дуги по которой поворачивается точка А. Это будет прямая, перпендикулярная прямой a1;
2) На пересечении прямой a и проекции дуги отмечаем точку O1;
3) Строим прямоугольный треугольник A1A0O1. Попутно мы решили задачу нахождения расстояния между прямой и точкой. Отрезок A0O1 - расстояние от точки A до прямой a;
4) Обратите внимание, на то, что построения, выполняемые на верхнем демонстрационном чертеже выполняются в вертикальной плоскости, а на ортогональном чертеже мы делаем те же построения, только в горизонтальной плоскости. На результат построений такой прием не влияет;
5) Проводим дугу A0A1' с центром в точке O1. А1' - новая проекция точки А;
6) Подняв от A1' линию проекционной связи до пересечения с a2 находим A2'.
32) Способ плоскопараллельного перемещения.
Метод плоскопараллельного перемещения.
Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рис. 145). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.
Рис.145
Свойства плоскопараллельного перемещения:
1. При всяком перемещении точек в плоскости параллельной плоскости П1, её фронтальная проекция перемещается по прямой линии, параллельной оси х.
2. В случае произвольного перемещения точки в плоскости параллельной П2, её горизонтальная проекция перемещается по прямой параллельной оси х.
В зависимости от положения этих плоскостей по отношению к плоскостям проекций и вида кривой линии - определяющей траекторию перемещения точек, метод плоскопараллельного проецирования имеет следующие частные случаи:
• Метод вращения вокруг оси, перпендикулярной плоскости проекций.
• Метод вращения вокруг оси, параллельной плоскости проекций.
• Метод вращения вокруг оси, принадлежащей плоскости проекций (вращение вокруг следа плоскости)- метод совмещения.
