Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Начерталка.docx
Скачиваний:
8
Добавлен:
01.04.2025
Размер:
5.7 Mб
Скачать

31)Способ вращения вокруг проецирующих прямых и прямых уровня

Этот способ является частным случаем способа плоскопараллельного перемещения, когда точка фигуры описывает дугу окружности, плоскость которой также параллельна плоскости проекций.

Графический алгоритм построения точек в способе вращения вокруг проецирующей прямой отличается лишь тем, что здесь траектория движения точки имеет вид окружности, а не произвольной прямой, как в плоскопараллельном проецировании.

Способ вращения вокруг проецирующей прямой более удобен при решении некоторых задач. Найдем с применением этого метода длину отрезка AB. Отрезок AB спроецируется на П2 в натуральную величину, если он будет ей параллелен. Для этого повернем его вокруг оси, проходящей через точку B до состояния параллельности П2, при этом точка A опишет дугу в горизонтальной плоскости.

Алгоритм графических построений:

Проведем ось вращения i через точку B. Ось i перпендикулярна П2;

Повернем отрезок AB до состояния параллельности оси проекций П1П2. Где A1'B1' - новая проекция AB;

Проводим вспомогательную линию на П2. Эта линия символизирует горизонтальную плоскость, в которой поворачивалась точка A;

Проводим линию связи и находим новую проекцию A2'B2' отрезка AB на П2;

A2'B2' - натуральная величина отрезка AB.

Способ вращения вокруг линии уровня

Этот способ применяется в основном для решения задачи преобразования плоскости общего положения в плоскость уровня. Суть способа заключается в том, что плоскость общего положения, поворачивается вокруг прямой уровня до состояния, параллельного горизонтальной плоскости проекций П1 либо фронтальной П2.

Рассмотрим поворот точки А вокруг горизонтали a до уровня горизонтали. Точка А движется по дуге окружности радиуса R с центром в точке O, принадлежащей горизонтали a. Радиус R является гипотенузой прямоугольного треугольника А0А1O, где один катет А1О - горизонтальная проекция радиуса вращения, другой - равен Dz - расстояние между точкой A и прямой a по вертикали. А' - новое положение точки А.

Алгоритм графических построений:

1) Через А1 проводим горизонтальную проекцию дуги по которой поворачивается точка А. Это будет прямая, перпендикулярная прямой a1;

2) На пересечении прямой a и проекции дуги отмечаем точку O1;

3) Строим прямоугольный треугольник A1A0O1. Попутно мы решили задачу нахождения расстояния между прямой и точкой. Отрезок A0O1 - расстояние от точки A до прямой a;

4) Обратите внимание, на то, что построения, выполняемые на верхнем демонстрационном чертеже выполняются в вертикальной плоскости, а на ортогональном чертеже мы делаем те же построения, только в горизонтальной плоскости. На результат построений такой прием не влияет;

5) Проводим дугу A0A1' с центром в точке O1. А1' - новая проекция точки А;

6) Подняв от A1' линию проекционной связи до пересечения с a2 находим A2'.

32) Способ плоскопараллельного перемещения.

Метод плоскопараллельного перемещения.

Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рис. 145). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.

Рис.145

Свойства плоскопараллельного перемещения:

1. При всяком перемещении точек в плоскости параллельной плоскости П1, её фронтальная проекция перемещается по прямой линии, параллельной оси х.

2. В случае произвольного перемещения точки в плоскости параллельной П2, её горизонтальная проекция перемещается по прямой параллельной оси х.

В зависимости от положения этих плоскостей по отношению к плоскостям проекций и вида кривой линии - определяющей траекторию перемещения точек, метод плоскопараллельного проецирования имеет следующие частные случаи:

• Метод вращения вокруг оси, перпендикулярной плоскости проекций.

• Метод вращения вокруг оси, параллельной плоскости проекций.

• Метод вращения вокруг оси, принадлежащей плоскости проекций (вращение вокруг следа плоскости)- метод совмещения.