- •2) Центральное и параллельное проецирование.
- •3) Инвариантные свойства параллельного проецирования
- •4)Метод Монжа
- •5)Положение точки в различных четвертях пространства
- •6) Положение прямой линии относительно плоскостей проекций
- •7) Прямые уровня. Свойства эпюра прямых уровня
- •8)Проецирующие прямые. Свойства эпюра прямых уровня.
- •9)Следы прямой линии
- •10)Деление отрезка в заданном отношении
- •12) Определение натуральной величины отрезка прямой. Способ прямоугольного треугольника.
- •13) Взаимное положение прямых линий. Способ конкурирующих точек.
- •14)Различные способы задания плоскости на чертеже
- •16)Проецирующие плоскости и их свойства
- •17)Плоскости уровня и их свойства
- •18)Следы плоскости
- •19)Принадлежность прямой и точки плоскости
- •20)Главные линии плоскости
- •21) Линии наибольшего наклона плоскости к плоскости проекций
- •22)Пересечение прямой с плоскостью. Общий алгоритм решения
- •23) Общий случай пересечения плоскостей
- •24)Параллельность прямой и плоскости
- •25) Параллельность двух плоскостей
- •26) Теорема о частном случае проецирования прямого угла
- •27)Перпендикулярность прямой и плоскости
- •28) Перпендикулярность двух плоскостей
- •29)Сущность преобразования проекций. Характеристика способов преобразования ортогональных проекций
- •30) Способ замены плоскостей проекций
- •31)Способ вращения вокруг проецирующих прямых и прямых уровня
- •32) Способ плоскопараллельного перемещения.
- •34) Гранные поверхности. Образование.
- •35)Точка и прямая на поверхности многогранника
- •36) Пересечение многогранника проецирующей плоскостью
- •37)Пересечение многогранника плоскостью общего положения
- •38) Пересечение прямой линии с многогранником. Общий алгоритм решения задачи.
- •39) Пересечение многогранников. Способ ребер. Способ граней.
- •40) Поверхности вращения.Образования
- •41)Точка на поверхности вращения. Определение видимости.
- •42) Пересечение поверхности тел вращения проецирующей плоскостью
- •43)Конические сечения. Примеры построения конических сечений
- •44)Цилиндрические сечения.
- •45)Пересечение поверхности вращения плоскостью общего положения
- •46) Пересечение прямой линии с поверхностью вращения
- •47)Пересечение поверхностей. Способ вспомогательных секущих плоскостей. План решения задачи.
- •48)Соосные поверхности. Пересечение соосных поверхностей.
- •49)Пересечение поверхностей. Способ вспомогательных концентрических сфер. План решения задачи.
- •50) Частные случаи пересечения поверхностей. Теорема о двойном касании. Теорема Монжа.
- •51) Построение развертки пирамиды способом треугольника (триангуляции)
- •52) Построение развертки способом нормального сечения.
- •54)Построение аксонометрических проекций точки, прямой, плоскости
26) Теорема о частном случае проецирования прямого угла
Теорема о проецировании прямого угла. Если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то при ортогональном проецировании прямой угол проецируется на эту плоскость в прямой же угол.
Рис.58 Рис.59
Пусть дан прямой угол ABC, у которого сторона АВ параллельна плоскости п' (рис. 59). Проецирующая плоскость перпендикулярна плоскости п'. Значит, АВ_|_S, так как АВ_|_ ВС и АВ_|_ВВ, отсюда АВ_|_В'С'. Но так как АВ || А'В'_|_В'С', т. е. на плоскости п' угол между А'В' и В'С равен 90°.
Обратимость чертежа. Проецирование на одну плоскость проекций дает изображение, которое не позволяет однозначно определить форму и размеры изображенного предмета. Проекция А (см. рис. 53) не определяет положение самой точки в пространстве, так как не известно, на какое расстояние она удалена от плоскости проекций п'. Любая точка проецирующего луча, проходящего через точку А, будет иметь своей проекцией точку А'. Наличие одной проекции создает неопределенность изображения. В таких случаях говорят о необратимости чертежа, так как по такому чертежу невозможно воспроизвести оригинал. Для исключения неопределенности изображение дополняют необходимыми данными. В практике применяют различные способы дополнения однопроекционного чертежа. В данном курсе будут рассмотрены чертежи, получаемые ортогональным проецированием на две или более взаимно перпендикулярные плоскости проекций (комплексные чертежи) и путем перепроецирования вспомогательной проекции предмета на основную аксонометрическую плоскость проекций (аксонометрические чертежи).
27)Перпендикулярность прямой и плоскости
Прямая перпендикулярна плоскости, если она перпендикулярна 2м пересекающимся прямым лежащим в этой плоскости. Чтобы построить прямую перпендикулярную плоскости, нужно иметь (или построить) горизонталь и фронталь этой плоскости.
28) Перпендикулярность двух плоскостей
Две плоскости перпендикулярны, если одна из них проходит через прямую, перпендикулярную к другой плоскости.
Пример: через точку А провести плоскость α, перпендикулярную L
Любая прямая принадлежащая α перпендикулярна прямой L
а(h, υ)_|_l
Две плоскости перпендикулярны, если одна из них проходит через прямую, перпендикулярную к другой плоскости.
Пример: Через точку А провести плоскость ρ,перпендикулярную к плоскости α
Задача имеет множество решений , т.к через точку можно провести бесконечное множество плоскостей.
ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПЛОСКОСТЕЙ.
Если плоскость проходит через прямую перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Доказательство: Пусть - плоскость , b - перпендикулярная ей прямая, - плоскость проходящая через прямую b, и с - прямая по которой пересекаются плоскости и . Докажем, что плоскости и перпендикулярны.
Проведем в плоскости через точку пересечения прямой b с плоскостью прямую а, перпендикулярную прямой с. Проведем через прямые а и b плоскость . Она перпендикулярна прямой с, так как прямые а и b перпендикулярны, то плоскости и перпендикулярны. Теорема доказана.
