
- •2) Центральное и параллельное проецирование.
- •3) Инвариантные свойства параллельного проецирования
- •4)Метод Монжа
- •5)Положение точки в различных четвертях пространства
- •6) Положение прямой линии относительно плоскостей проекций
- •7) Прямые уровня. Свойства эпюра прямых уровня
- •8)Проецирующие прямые. Свойства эпюра прямых уровня.
- •9)Следы прямой линии
- •10)Деление отрезка в заданном отношении
- •12) Определение натуральной величины отрезка прямой. Способ прямоугольного треугольника.
- •13) Взаимное положение прямых линий. Способ конкурирующих точек.
- •14)Различные способы задания плоскости на чертеже
- •16)Проецирующие плоскости и их свойства
- •17)Плоскости уровня и их свойства
- •18)Следы плоскости
- •19)Принадлежность прямой и точки плоскости
- •20)Главные линии плоскости
- •21) Линии наибольшего наклона плоскости к плоскости проекций
- •22)Пересечение прямой с плоскостью. Общий алгоритм решения
- •23) Общий случай пересечения плоскостей
- •24)Параллельность прямой и плоскости
- •25) Параллельность двух плоскостей
- •26) Теорема о частном случае проецирования прямого угла
- •27)Перпендикулярность прямой и плоскости
- •28) Перпендикулярность двух плоскостей
- •29)Сущность преобразования проекций. Характеристика способов преобразования ортогональных проекций
- •30) Способ замены плоскостей проекций
- •31)Способ вращения вокруг проецирующих прямых и прямых уровня
- •32) Способ плоскопараллельного перемещения.
- •34) Гранные поверхности. Образование.
- •35)Точка и прямая на поверхности многогранника
- •36) Пересечение многогранника проецирующей плоскостью
- •37)Пересечение многогранника плоскостью общего положения
- •38) Пересечение прямой линии с многогранником. Общий алгоритм решения задачи.
- •39) Пересечение многогранников. Способ ребер. Способ граней.
- •40) Поверхности вращения.Образования
- •41)Точка на поверхности вращения. Определение видимости.
- •42) Пересечение поверхности тел вращения проецирующей плоскостью
- •43)Конические сечения. Примеры построения конических сечений
- •44)Цилиндрические сечения.
- •45)Пересечение поверхности вращения плоскостью общего положения
- •46) Пересечение прямой линии с поверхностью вращения
- •47)Пересечение поверхностей. Способ вспомогательных секущих плоскостей. План решения задачи.
- •48)Соосные поверхности. Пересечение соосных поверхностей.
- •49)Пересечение поверхностей. Способ вспомогательных концентрических сфер. План решения задачи.
- •50) Частные случаи пересечения поверхностей. Теорема о двойном касании. Теорема Монжа.
- •51) Построение развертки пирамиды способом треугольника (триангуляции)
- •52) Построение развертки способом нормального сечения.
- •54)Построение аксонометрических проекций точки, прямой, плоскости
2) Центральное и параллельное проецирование.
ПАРАЛЛЕЛЬНОЕ ПРОЕЦИРОВАНИЕ
Параллельное проецирование можно рассматривать как частный случай центрального проецирования с бесконечно удаленным центром проекций. Осуществляется оно пучком параллельных проецирующих лучей заданного направления. Пусть требуется построить параллельную проекцию кривой k на плоскость П1(рис.1.2).
Рис. 1.2.
Спроецируем в направлении s все точки кривой k на плоскость П1. Чтобы спроецировать точки указанной кривой, например А, В, С, нужно провести через них прямые, параллельные направлению s, до пересечения с плоскостью П1. Точки пересечения A1,B1,C1 проецирующих лучей с плоскостью П1 и будут параллельными проекциями точек А, В и С. Таким образом можно построить проекции множества точек кривой k. В зависимости от направления проецирования по отношению к плоскости проекций П1 различают два вида параллельных проекций: косоугольную, когда проецирующие лучи не перпендикулярны к плоскости П1 (рис. 1.2, кривая k), и прямоугольную (или ортогональную), когда проецирующие лучи перпендикулярны к плоскости проекций (рис.1.2, прямая а). Несмотря на то, что параллельное проецирование по сравнению с центральным дает меньшую наглядность, параллельные проекции, особенно ортогональные, обладают удобоизмеримостью и простотой построения. Поэтому ортогональное проецирование широко распространено в технике и является основным методом начертательной геометрии.
Свойства параллельного проецирования
При параллельном проецировании сохраняются все свойства центрального проецирования, а также возникают следующие новые свойства.
1. Проекции параллельных прямых параллельны между собой, т.е., если а ½½ b, то a1 ½½ b1. Пусть отрезки АВ и DE параллельны (рис. 1.3), тогда проецирующие плоскости AA1BB1 и DD1E1E будут также параллельны. Следовательно, линии A1B1 и D1E1 пересечения этих плоскостей с П1 будут параллельны.
2.Отношение отрезков, принадлежащих параллельным прямым или одной прямой, равно отношению проекций этих отрезков, т.е., если AB ½½ DE, то D AB / DE = D A1B1 / D1E1
3. При параллельном перемещении плоскости проекций проекция фигуры не изменяется. Если П1П2, то D A1B1C1 = D A2B2C2 (рис.1.4).
Рис.1.3.
ЦЕНТРАЛЬНОЕ ПРОЕЦИРОВАНИЕ
Основными видами проецирования являются центральное и параллельное. Центральное проецирование представляет собой общий случай проецирования геометрических образов из некоторого центра на плоскость.
Пусть задана плоскость П1 и кривая линия k с точками А, В, С (рис.1.1).
Рис.1.1.
Возьмем некоторую точку S, не лежащую в плоскости П1. Через точку S и точки А, В, С кривой k проведем прямые до пересечения с плоскостью П1 в точках A1, B1, C1. Проведя таким образом через S и каждую точку кривой k прямые, получим в плоскости П1 изображение k1 кривой k.
В соответствии с описанным построением введем следующие понятия:
S - центр проекций; П1 - плоскость проекций; кривая k с точками А, В, С - объект проецирования; SА, SВ, SС - проецирующие лучи; A1,B1,C1 - центральные проекции точек А, В, С; k1 - центральная проекция кривой k. Рассматривая каждую пространственную фигуру как совокупность точек, можно сказать, что проекция фигуры представляет собой множество проекций ее точек.
Свойства центрального проецирования:
1. Любая точка (кроме S) проецируется на плоскость проекций в единственную точку (рис.1).
2. Каждой точке (A, B, C, D,...), принадлежащей какой-либо линии (кривой или прямой), соответствует проекция (A1, B1, C1, D1, ...) этой точки на проекции данной линии (рис.1).
3. Кривая в общем случае проецируется в кривую, а прямая - в прямую. Если прямая совпадает с проецирующим лучом, например DE (рис.1), то она проецируется в точку D1 º E1. Плоскость, проходящая через центр проекций, проецируется в прямую и называется проецирующей. Кривая, все точки которой принадлежат проецирующей плоскости, проецируется в прямую.
4. Точка пересечения линий проецируется в точку пересечения проекций этих линий (рис.1).
Центральное проецирование обладает большой наглядностью и применяется в строительном черчении, в архитектуре, в живописи и т.п. Недостатком центрального проецирования является сложность построения изображения предмета и определения истинных размеров. Поэтому оно имеет ограниченное применение в техническом черчении.