
- •Архитектура ом
- •Структура машин фон-Неймана, із загальною шиною, з каналами прямого доступу в пам'ять. Порівняльний аналіз і область застосування.
- •Апаратно-програмна реалізація обчислювальної системи. Призначення й основні функції операційної системи, однопрограмний і багатопрограмний режими роботи системи.
- •Класифікація операцій. Формати представлення команд і даних. Чотири-, трьох-, двох-, одно- і нуль-адресні команди. Определение наборов операций
- •Форматы команд
- •Способи адресації операндів. Безпосередня, пряма, непряма й індексна адресації. Призначення й область застосування.
- •Відносна, сторінкова і сегментна адресація. Переміщення програм і даних в оперативній пам'яті машини.
- •Операції переходу і розгалуження, їхня реалізація.
- •Операції звертання до підпрограм. Способи організації підпрограм. Організація динамічного розподілу пам'яті для підпрограм і їхніх даних.
- •Віртуальна пам'ять. Сторінкова організація віртуальної пам'яті. Алгоритми звертання до пам'яті.
- •Самообумовлені дані. Теги і дескриптори. Призначення і їхнє застосування.
- •Захист пам'яті. Призначення. Методи захисту верхніми і нижніми границями.
- •Захист пам'яті за допомогою ключів захисту. Структурна схема пам'яті з захистом. Достоїнства і недоліки.
- •Віртуальні процесори. Призначення і реалізація.
- •Віртуальні периферійні пристрої. Призначення, приклад реалізації.
- •Віртуальні машини. Призначення і приклад реалізації.
- •Операції вводу-виводу в ibm pc.
- •НкДтаЕ еом
- •Об'єкт діагностування, клас несправності, тест, система діагностування. Основні поняття і визначення.
- •Методи параметричного діагностування (пд).
- •Детермінований функціональний підхід до синтезу тестів.
- •Детермінований структурний підхід до синтезу тестів.
- •Обзор существующих методов
- •Застосування логічного моделювання для синтезу тесту.
- •Методи аналізу вихідних реакцій.
- •Ймовірний подхід до синтезу тестів.
- •Основні підходи до тестування мікропроцесорних пристроїв.
- •Попередні перетворення опису схем для синтезу схем.
- •Двійкова і двійково-кодована система числення.
- •Представлення числової інформації в еом.
- •Алгоритми додавання чисел.
- •Алгоритми множення чисел.
- •Алгоритми ділення чисел.
- •Виконання арифметичних операцій над числами з плаваючою крапкою.
- •Виконання арифметичних операцій у двійковій-десятковій системі числення.
- •Контроль по модулю арифметичних операцій.
- •Точність представлення чисел і виконання арифметичних операцій.
- •Проектування мпс
- •Мікропроцесори 2 і 3-го покоління фірми Intel.
- •Організація пам'яті в мікропроцесорних системах.
- •Організація переривань у мікропроцесорних системах.
- •Програмуємий послідовний інтерфейс мпс.
- •Організація вводу-виводу на базі віс пдп.
- •Реалізація внутрішніх системних інтерфейсів мпс.
- •Однокристальні мікро-еом фірми Intel.
- •Віс мпк 2 і 3-го поколінь фірми Intel.
- •Зовнішні інтерфейси мпс.
- •Структура пеом ibm pc.
- •Структура 32-х розрядних мікропроцесорів 4-го покоління фірми Intel.
- •Структура віс мікропроцесорного комплекту 4-го покоління для 32-х розрядних мікропроцесорних систем.
- •Комбінаційні схеми (кс). Основні поняття і визначення. Канонічний метод синтезу кс.
- •Комбінаційні схеми (кс). Аналіз кс. Основні методи аналізу кс.
- •Абстрактний автомат. Основні поняття і визначення. Класифікація. Способи завдання.
- •Способы описания и задания автоматов.
- •Канонічний метод синтезу кінцевого автомата.
- •Кодування внутрішніх станів автомата.
- •Кодирование состояний и сложность комбинационной схемы автомата.
- •Принцип мікропрограмного керування.
- •Структура операційного пристрою. Функції операційного і керуючого автоматів.
- •Мікропрограмні автомати (мпа). Інтерпретація граф-схеми алгоритму. Способы описания алгоритмов и микропрограмм
- •Канонічний метод синтезу мпа Милі з "жорсткою" логікою.
- •Канонічний метод синтезу мпа Мура з "жорсткою" логікою.
- •Достоинства и недостатки автоматов с жесткой логикой.
- •Синтез мпа Мура на базі регістру зсуву. Синтез управляющего автомата Мура на базе регистра сдвига.
- •Операційний автомат і мікропрограма додавання дробових чисел з фіксованою крапкою.
- •Операційний автомат і мікропрограма множення дробових чисел з фіксованою крапкою.
- •Двійкові-десяткові коди (д-коды) і їхньої властивості. Виконання арифметичних операцій у д-кодах.
- •Система числення в залишкових класах. Її особливість і застосування в обчислювальній техніці.
Система числення в залишкових класах. Її особливість і застосування в обчислювальній техніці.
Система залишкових класів (СОК)
Подання
числа в системі залишкових класів
засноване на понятті вирахування і
китайської теореми про залишки. СОК
визначається набором взаємно простих
модулів
з твором
так, що кожному цілого числа x з відрізка
[0, M - 1] ставиться у відповідність набір
відрахувань
, Де
…
При цьому китайська теорема про залишки гарантує однозначність подання для чисел з відрізка [0, M - 1] .
В СОК арифметичні операції (додавання, віднімання, множення, ділення) виконуються покомпонентно, якщо про результат відомо, що він є цілочисельним і також лежить в [0, M - 1] .
Недоліками
СОК є можливість подання лише обмеженої
кількості чисел, а також відсутність
ефективних алгоритмів для порівняння
чисел, представлених в СОК. Порівняння
зазвичай здійснюється через переклад
аргументів з СОК в змішану систему
числення з підстав
.
Система счисления в остаточных классах. Машинная арифметика СОК.
Система остаточных классов (СОК) – это непозиционная система счисления, числа в которой представляются остатками от деления на выбранную систему оснований Р1, Р2,...,Рn и являются взаимнопростыми числами. Операции сложения, вычитания и умножения над числами в СОК производятся независимо по каждому основанию без переносов между разрядами (основаниями). Диапазон представимых чисел P=P1ЧP2Ч...ЧPn [4].
Если задан ряд положительных взаимнопростых чисел Р1, Р2,...,Рn, то целое положительное число А, представленное в виде набора наименьших положительных остатков (вычетов) от деления числа А на выбранные основания Р1, Р2,...,Рn, можно записать в виде А=(a1, a2,...,an).
Рассмотрим примеры выполнения операций сложения и умножения чисел в СОК. Пусть основаниями системы являются Р1=2, Р2=3, Р3=5, Р4=7. Диапазон представимых чисел в данной системе Р=2Ч3Ч5Ч7=210. Требуется сложить числа А=34 и В=87. По выбранным основаниям числа А и В в СОК будут иметь вид А=(0, 1, 4, 6), В=(1, 0, 2, 3).
Сложим числа А и В
...
Легко проверить, что число А+В, представленное по выбранным основаниям как (1, 1, 1, 2), равно 121.
Пусть требуется умножить числа А=17 и В=8. А=(1, 2, 2, 3), В=(0, 2, 3, 1).
...
В самом деле, число АхВ, представленное по выбранным основаниям как (0, 1, 1, 3), равно 136.
Такие операции, как деление, сравнение и др., требующие информации о величине всего числа, в СОК выполняются по более сложным алгоритмам. И в этом заключается существенный недостаток данной системы счисления, сдерживающий ее широкое применение в качестве компьютерной арифметики. Однако сегодня даже в самых современных компьютерах при работе с большими и супербольшими числами используют СОК, ибо только эта арифметика позволяет получать результаты вычислений в реальном времени. В таких случаях в качестве оснований СОК применяют величины, близкие к 2m (m – двоичная разрядность компьютера), например 2m-1-1, 2m-1, 2m-1+1 и т.д. Компьютер вычисляет результат по одному из модулей за один проход. Другие области применения СОК – помехоустойчивое кодирование, криптография и т.п.