
- •Архитектура ом
- •Структура машин фон-Неймана, із загальною шиною, з каналами прямого доступу в пам'ять. Порівняльний аналіз і область застосування.
- •Апаратно-програмна реалізація обчислювальної системи. Призначення й основні функції операційної системи, однопрограмний і багатопрограмний режими роботи системи.
- •Класифікація операцій. Формати представлення команд і даних. Чотири-, трьох-, двох-, одно- і нуль-адресні команди. Определение наборов операций
- •Форматы команд
- •Способи адресації операндів. Безпосередня, пряма, непряма й індексна адресації. Призначення й область застосування.
- •Відносна, сторінкова і сегментна адресація. Переміщення програм і даних в оперативній пам'яті машини.
- •Операції переходу і розгалуження, їхня реалізація.
- •Операції звертання до підпрограм. Способи організації підпрограм. Організація динамічного розподілу пам'яті для підпрограм і їхніх даних.
- •Віртуальна пам'ять. Сторінкова організація віртуальної пам'яті. Алгоритми звертання до пам'яті.
- •Самообумовлені дані. Теги і дескриптори. Призначення і їхнє застосування.
- •Захист пам'яті. Призначення. Методи захисту верхніми і нижніми границями.
- •Захист пам'яті за допомогою ключів захисту. Структурна схема пам'яті з захистом. Достоїнства і недоліки.
- •Віртуальні процесори. Призначення і реалізація.
- •Віртуальні периферійні пристрої. Призначення, приклад реалізації.
- •Віртуальні машини. Призначення і приклад реалізації.
- •Операції вводу-виводу в ibm pc.
- •НкДтаЕ еом
- •Об'єкт діагностування, клас несправності, тест, система діагностування. Основні поняття і визначення.
- •Методи параметричного діагностування (пд).
- •Детермінований функціональний підхід до синтезу тестів.
- •Детермінований структурний підхід до синтезу тестів.
- •Обзор существующих методов
- •Застосування логічного моделювання для синтезу тесту.
- •Методи аналізу вихідних реакцій.
- •Ймовірний подхід до синтезу тестів.
- •Основні підходи до тестування мікропроцесорних пристроїв.
- •Попередні перетворення опису схем для синтезу схем.
- •Двійкова і двійково-кодована система числення.
- •Представлення числової інформації в еом.
- •Алгоритми додавання чисел.
- •Алгоритми множення чисел.
- •Алгоритми ділення чисел.
- •Виконання арифметичних операцій над числами з плаваючою крапкою.
- •Виконання арифметичних операцій у двійковій-десятковій системі числення.
- •Контроль по модулю арифметичних операцій.
- •Точність представлення чисел і виконання арифметичних операцій.
- •Проектування мпс
- •Мікропроцесори 2 і 3-го покоління фірми Intel.
- •Організація пам'яті в мікропроцесорних системах.
- •Організація переривань у мікропроцесорних системах.
- •Програмуємий послідовний інтерфейс мпс.
- •Організація вводу-виводу на базі віс пдп.
- •Реалізація внутрішніх системних інтерфейсів мпс.
- •Однокристальні мікро-еом фірми Intel.
- •Віс мпк 2 і 3-го поколінь фірми Intel.
- •Зовнішні інтерфейси мпс.
- •Структура пеом ibm pc.
- •Структура 32-х розрядних мікропроцесорів 4-го покоління фірми Intel.
- •Структура віс мікропроцесорного комплекту 4-го покоління для 32-х розрядних мікропроцесорних систем.
- •Комбінаційні схеми (кс). Основні поняття і визначення. Канонічний метод синтезу кс.
- •Комбінаційні схеми (кс). Аналіз кс. Основні методи аналізу кс.
- •Абстрактний автомат. Основні поняття і визначення. Класифікація. Способи завдання.
- •Способы описания и задания автоматов.
- •Канонічний метод синтезу кінцевого автомата.
- •Кодування внутрішніх станів автомата.
- •Кодирование состояний и сложность комбинационной схемы автомата.
- •Принцип мікропрограмного керування.
- •Структура операційного пристрою. Функції операційного і керуючого автоматів.
- •Мікропрограмні автомати (мпа). Інтерпретація граф-схеми алгоритму. Способы описания алгоритмов и микропрограмм
- •Канонічний метод синтезу мпа Милі з "жорсткою" логікою.
- •Канонічний метод синтезу мпа Мура з "жорсткою" логікою.
- •Достоинства и недостатки автоматов с жесткой логикой.
- •Синтез мпа Мура на базі регістру зсуву. Синтез управляющего автомата Мура на базе регистра сдвига.
- •Операційний автомат і мікропрограма додавання дробових чисел з фіксованою крапкою.
- •Операційний автомат і мікропрограма множення дробових чисел з фіксованою крапкою.
- •Двійкові-десяткові коди (д-коды) і їхньої властивості. Виконання арифметичних операцій у д-кодах.
- •Система числення в залишкових класах. Її особливість і застосування в обчислювальній техніці.
Відносна, сторінкова і сегментна адресація. Переміщення програм і даних в оперативній пам'яті машини.
Относительная адресация
При относительной адресации (ОА) для получения исполнительного адреса операнда содержимое подполя Ак команды складывается с содержимым счетчика команд. Таким образом, адресный код в команде представляет собой смещение относительно адреса текущей команды. Следует отметить, что в момент вычисления исполнительного адреса операнда в счетчике команд может уже быть сформирован адрес следующей команды, что нужно учитывать при выборе величины смещения. Обычно подполе Ак трактуется как двоичное число в дополнительном коде.
Адресация относительно счетчика команд базируется на свойстве локальности, выражающемся в том, что большая часть обращений происходит к ячейкам, расположенным в непосредственной близости от выполняемой команды. Это позволяет сэкономить на длине адресной части команды, поскольку разрядность подполя Ак может быть небольшой. Главное достоинство данного способа адресации состоит в том, что он делает программу перемещаемой в памяти: независимо от текущего расположения программы в адресном пространстве взаимное положение команды и операнда остается неизменным.
Страничная адресация
Страничная адресация (СТА) предполагает разбиение адресного пространства на страницы. Страница определяется своим начальным адресом, выступающим в качестве базы. Старшая часть этого адреса хранится в специальном регистре — регистре адреса страницы (РАС). В адресном коде команды указывается смещение внутри страницы, рассматриваемое как младшая часть исполнительного адреса. Исполнительный адрес образуется конкатенацией (присоединением) АС к содержимому РАС.
Сегментная адресация памяти
Сегментная адресация памяти — схема логической адресации памяти компьютера в архитектуре x86. Линейный адрес конкретной ячейки памяти, который в некоторых режимах работы процессора будет совпадать с физическим адресом, делится на две части: сегмент и смещение. Сегментом называется условно выделенная область адресного пространства определённого размера, а смещением — адрес ячейки памяти относительно начала сегмента. Базой сегмента называется линейный адрес (адрес относительно всего объёма памяти), который указывает на начало сегмента в адресном пространстве. В результате получается сегментный (логический) адрес, который соответствует линейному адресу база сегмента+смещение и который выставляется процессором на шину адреса.
Селектором называется число (в x86 — 16-битное), однозначно определяющее сегмент. Селектор загружается в сегментные регистры.
В реальном и защищённом режимах x86-процессора функционирование сегментной адресации отличается.
Сегментная адресация в реальном режиме
В реальном режиме процессора всё адресное пространство делится на одинаковые сегменты размером 65536 байт. База каждого последующего сегмента смещена относительно базы предыдущего на 16 байт (т. н. параграф). Таким образом, сегменты частично перекрывают друг друга.
Селектор 16-разрядный и задаёт номер сегмента. Учитывая, что сегменты следуют друг за другом с постоянным интервалом в 24=16 байт, очень легко выяснить линейный адрес сегмента, умножая его на 16.
Управление памятью
Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной системой. Обычно ОС располагается в самых младших адресах, однако может занимать и самые старшие адреса. Функциями ОС по управлению памятью являются: отслеживание свободной и занятой памяти, выделение памяти процессам и освобождение памяти при завершении процессов, вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место, а также настройка адресов программы на конкретную область физической памяти.
Типы адресов
Для идентификации переменных и команд используются символьные имена (метки), виртуальные адреса и физические адреса (рисунок 2.7).
Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.
Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Так как во время трансляции в общем случае не известно, в какое место оперативной памяти будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что программа будет размещена, начиная с нулевого адреса. Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство. Максимальный размер виртуального адресного пространства ограничивается разрядностью адреса, присущей данной архитектуре компьютера, и, как правило, не совпадает с объемом физической памяти, имеющимся в компьютере.