
- •Архитектура ом
- •Структура машин фон-Неймана, із загальною шиною, з каналами прямого доступу в пам'ять. Порівняльний аналіз і область застосування.
- •Апаратно-програмна реалізація обчислювальної системи. Призначення й основні функції операційної системи, однопрограмний і багатопрограмний режими роботи системи.
- •Класифікація операцій. Формати представлення команд і даних. Чотири-, трьох-, двох-, одно- і нуль-адресні команди. Определение наборов операций
- •Форматы команд
- •Способи адресації операндів. Безпосередня, пряма, непряма й індексна адресації. Призначення й область застосування.
- •Відносна, сторінкова і сегментна адресація. Переміщення програм і даних в оперативній пам'яті машини.
- •Операції переходу і розгалуження, їхня реалізація.
- •Операції звертання до підпрограм. Способи організації підпрограм. Організація динамічного розподілу пам'яті для підпрограм і їхніх даних.
- •Віртуальна пам'ять. Сторінкова організація віртуальної пам'яті. Алгоритми звертання до пам'яті.
- •Самообумовлені дані. Теги і дескриптори. Призначення і їхнє застосування.
- •Захист пам'яті. Призначення. Методи захисту верхніми і нижніми границями.
- •Захист пам'яті за допомогою ключів захисту. Структурна схема пам'яті з захистом. Достоїнства і недоліки.
- •Віртуальні процесори. Призначення і реалізація.
- •Віртуальні периферійні пристрої. Призначення, приклад реалізації.
- •Віртуальні машини. Призначення і приклад реалізації.
- •Операції вводу-виводу в ibm pc.
- •НкДтаЕ еом
- •Об'єкт діагностування, клас несправності, тест, система діагностування. Основні поняття і визначення.
- •Методи параметричного діагностування (пд).
- •Детермінований функціональний підхід до синтезу тестів.
- •Детермінований структурний підхід до синтезу тестів.
- •Обзор существующих методов
- •Застосування логічного моделювання для синтезу тесту.
- •Методи аналізу вихідних реакцій.
- •Ймовірний подхід до синтезу тестів.
- •Основні підходи до тестування мікропроцесорних пристроїв.
- •Попередні перетворення опису схем для синтезу схем.
- •Двійкова і двійково-кодована система числення.
- •Представлення числової інформації в еом.
- •Алгоритми додавання чисел.
- •Алгоритми множення чисел.
- •Алгоритми ділення чисел.
- •Виконання арифметичних операцій над числами з плаваючою крапкою.
- •Виконання арифметичних операцій у двійковій-десятковій системі числення.
- •Контроль по модулю арифметичних операцій.
- •Точність представлення чисел і виконання арифметичних операцій.
- •Проектування мпс
- •Мікропроцесори 2 і 3-го покоління фірми Intel.
- •Організація пам'яті в мікропроцесорних системах.
- •Організація переривань у мікропроцесорних системах.
- •Програмуємий послідовний інтерфейс мпс.
- •Організація вводу-виводу на базі віс пдп.
- •Реалізація внутрішніх системних інтерфейсів мпс.
- •Однокристальні мікро-еом фірми Intel.
- •Віс мпк 2 і 3-го поколінь фірми Intel.
- •Зовнішні інтерфейси мпс.
- •Структура пеом ibm pc.
- •Структура 32-х розрядних мікропроцесорів 4-го покоління фірми Intel.
- •Структура віс мікропроцесорного комплекту 4-го покоління для 32-х розрядних мікропроцесорних систем.
- •Комбінаційні схеми (кс). Основні поняття і визначення. Канонічний метод синтезу кс.
- •Комбінаційні схеми (кс). Аналіз кс. Основні методи аналізу кс.
- •Абстрактний автомат. Основні поняття і визначення. Класифікація. Способи завдання.
- •Способы описания и задания автоматов.
- •Канонічний метод синтезу кінцевого автомата.
- •Кодування внутрішніх станів автомата.
- •Кодирование состояний и сложность комбинационной схемы автомата.
- •Принцип мікропрограмного керування.
- •Структура операційного пристрою. Функції операційного і керуючого автоматів.
- •Мікропрограмні автомати (мпа). Інтерпретація граф-схеми алгоритму. Способы описания алгоритмов и микропрограмм
- •Канонічний метод синтезу мпа Милі з "жорсткою" логікою.
- •Канонічний метод синтезу мпа Мура з "жорсткою" логікою.
- •Достоинства и недостатки автоматов с жесткой логикой.
- •Синтез мпа Мура на базі регістру зсуву. Синтез управляющего автомата Мура на базе регистра сдвига.
- •Операційний автомат і мікропрограма додавання дробових чисел з фіксованою крапкою.
- •Операційний автомат і мікропрограма множення дробових чисел з фіксованою крапкою.
- •Двійкові-десяткові коди (д-коды) і їхньої властивості. Виконання арифметичних операцій у д-кодах.
- •Система числення в залишкових класах. Її особливість і застосування в обчислювальній техніці.
Архитектура ом
Структура машин фон-Неймана, із загальною шиною, з каналами прямого доступу в пам'ять. Порівняльний аналіз і область застосування.
Архитектура фон Неймана — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.
Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.
Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.
Принципы фон Неймана
В 1946 году трое учёных[1][2] — Артур Бёркс (англ.), Герман Голдстайн и Джон фон Нейман — опубликовали статью «Предварительное рассмотрение логического конструирования электронного вычислительного устройства»[3][4]. В статье обосновывалось использование двоичной системы для представления данных в ЭВМ (преимущественно для технической реализации, простота выполнения арифметических и логических операций — до этого машины хранили данные в десятичном виде[5]), выдвигалась идея использования общей памяти для программы и данных. Имя фон Неймана было достаточно широко известно в науке того времени, что отодвинуло на второй план его соавторов, и данные идеи получили название «принципы фон Неймана».
- Принцип однородности памяти
Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.
- Принцип адресуемости памяти
Основная память структурно состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.
- Принцип последовательного программного управления
Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
- Принцип жесткости архитектуры
Неизменяемость в процессе работы топологии, архитектуры, списка команд.
Так же в некоторых источниках[каких?] указывается принцип двоичного кодирования, но существовали машины, работающие с троичным и с десятичным кодом.
Компьютеры, построенные на принципах фон Неймана
В середине 1940-х проект компьютера, хранящего свои программы в общей памяти, был разработан в Институте Мура (англ.) в Пенсильванском Университете. Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру ENIAC, который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании ENIAC. По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми семью компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:
прототип — Манчестерская малая экспериментальная машина — Манчестерский университет, Великобритания, 21 июня 1948 года;
EDSAC — Кембриджский университет, Великобритания, 6 мая 1949 года;
Манчестерский Марк I — Манчестерский университет, Великобритания, 1949 год;
BINAC — США, апрель или август 1949 года;
CSIR Mk 1 — Австралия, ноябрь 1949 года;
SEAC — США, 9 мая 1950 года
EDVAC — США, август 1949 года — фактически запущен в 1951 году;
Узкое место архитектуры фон Неймана
Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти. Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность является значительно меньшей, чем скорость, с которой процессор может работать. Это серьезно ограничивает эффективное быстродействие при использовании процессоров, необходимых для выполнения минимальной обработки на больших объёмах данных. Процессор постоянно вынужден ждать необходимых данных, которые будут переданы в память или из памяти. Так как скорость процессора и объём памяти увеличивались гораздо быстрее, чем пропускная способность между ними, узкое место стало большой проблемой, серьезность которой возрастает с каждым новым поколением процессоров.
С точки зрения организации процессов выборки и исполнения команды в современных 8-разрядных МК применяется одна из двух уже упоминавшихся архитектур МПС: фон-неймановская (принстонская) или гарвардская.
Основной особенностью фон-неймановской архитектуры является использование общей памяти для хранения программ и данных, как показано на рис. 4.2.
Рис. 4.2. Структура МПС с фон-неймановской архитектурой.
Основное преимущество архитектуры Фон-Неймана – упрощение устройства МПС, так как реализуется обращение только к одной общей памяти. Кроме того, использование единой области памяти позволяло оперативно перераспределять ресурсы между областями программ и данных, что существенно повышало гибкость МПС с точки зрения разработчика программного обеспечения. Размещение стека в общей памяти облегчало доступ к его содержимому. Неслучайно поэтому фон-неймановская архитектура стала основной архитектурой универсальных компьютеров, включая персональные компьютеры.
В фон-неймановской архитектуре единая область памяти используется, в том числе, и для реализации стека. При этом снижается производительность устройства, так как одновременный доступ к различным видам памяти невозможен. В частности, при выполнении команды вызова подпрограммы следующая команда выбирается после того, как в стек будет помещено содержимое программного счетчика.
Фон-неймановская архитектура — одношинная архитектура, то же, что принстонская архитектура.
Рис. 1.4 Архитектура фон-Неймана с каналом ПДП