
- •1.Естествознание как элемент мировоззрения.
- •2.Взаимодействие двух культур.
- •3.Сциентизм и антисциентизм
- •4.Общие классификации наук. Специальные классификации наук.
- •5.Взаимоотношения философии и естествознания.
- •6.Философские основания естествознания
- •7.Знаковые системы
- •8.Сущность математики и история ее развития.
- •9.Математика как специфический язык естествознания
- •10.Приложение математики к разным отраслям естествознания
- •11.Религия как феномен культуры. История взаимоотношений религиозного и научного видов знания
- •12.Естествознание с точки зрения теологов.
- •13.Взаимоотношения естествознания и религии в современном мире
- •14.Подходы к изучению теории естествознания.
- •15.Кумулятивная модель развития науки
- •16.Научные революции в истории науки
- •17.«Кейс стади» как метод исследования.
- •20. Психологический контекст открытий
- •21. Этапы изменения характера науки
- •22. Научные революции Нового и Новейшего времени.
- •23. Типы научной рациональности
- •24. Краткий очерк истории физики
- •25. Краткий очерк истории химии
- •26. Краткий очерк истории геологии
- •27. Краткий очерк истории биологии
- •28. Краткий очерк истории географии
- •29. Познавание и проблема познаваемости мира
- •30. Понятие истины и ее критерии
- •31. Формы познания
- •32. Наука и научное знание
- •33. Функции научного познания
- •34.Научное и вненаучное знание
- •35. Критерии отграничения научного знания.
- •36. Виды средств и методов. Методология.
- •37. Система методов естествознания
- •38. Характеристика основных методов науки
- •39. Структура и уровни научного знания
- •40. Уровни научного знания и их соотношение.
- •41. Индуктивный и рационалистический пути познания
- •42. Проблема построения единой теории -
- •43. Социальный феномен науки
- •44. Научные сообщества
- •45. Идеалы и ценности науки. Социальная ответственность ученого
- •46. Системность и уровни системности труда
- •47. Эволюция системных представлений
- •48. Свойства и классификация систем
- •49. Информация как мера организованности системы
- •50. Понятие модели и моделирования
- •51. Классификация моделей
- •52. Основные типы моделей систем
- •53. Этапы системного исследования моделей
- •54. Самоорганизация и классическая термодинамика
- •55. Свойства самоорганизующихся систем
- •56. Примеры процессов, происходящих в самоорганизующихся системах
- •57. Становление эволюционных идей в науке
- •58. Основные принципы глобального эволюционизма
- •59. Закономерности и факторы эволюции
- •60.Особенности эволюционного процесса
- •62. Эволюция представлений о пространстве и времени
- •63. Пространство и время в различных отраслях естествознания
- •64. Самостоятельность пространства и времени
- •65.Мерность пространства и времени
- •66.Симметрия и асимметрия пространства и времени
- •67.Обратимость пространства и времени
- •68.Геометрические свойства пространство
- •69.Размеры микрообъектов
- •70.Размеры макрообъектов
- •71.Межзвездные пространства.
- •72.Малые интервалы времени
- •73.Исчисление лет и исторических эпох
- •74.Геологические интервалы времени
- •75.Космические интервалы времени
54. Самоорганизация и классическая термодинамика
Согласно современным представлениям, элементарным процессом эволюции является самоорганизация. Можно сказать, что в сущности эволюция состоит из бесконечной последовательности процессов самоорганизации. В широком смысле слова под самоорганизацией понимают тенденцию развития природы от менее сложных к более сложным и упорядоченным формам организации материи. В более узком понимании самоорганизация есть спонтанный переход открытой неравновесной системы от простых и неупорядоченных форм организации к более сложным и упорядоченным. Самоорганизующиеся системы должны отвечать определенным требованиям: 1) они должны быть неравновесными или находиться в состоянии, далеком от термодинамического равновесия; 2) они должны быть открытыми и получать приток энергии, вещества и информации извне. По Г. Хакену, систему можно назвать самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием понимается такое, которое навязывает системе структуру или функционирование. В последнее время сущность самоорганизации в открытых системах изучается в новой области естествознания - синергетике, которая охватывает все проблемы, связанные с образованием упорядоченных структур в сложных системах в результате скоррелированного поведения подсистем. Ее основные идеи восходят к Э. Шрёдингеру, A.M. Тьюрингу, Л. фон Берталанфи и др.
Для того чтобы понять сущность самоорганизующихся систем, которые рассматривает синергетика, напомним, что выделяют закрытые системы, которые не обмениваются со средой веществом, энергией и информацией. Поведение закрытых систем рассматривается в рамках классической термодинамики. Центральным понятием термодинамики является энтропия S — функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре Т системы: dS = dQ/T. Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, приближая систему к состоянию равновесия, в котором энтропия максимальна.
По отношению к закрытым системам были сформулированы два из трех начал термодинамики. Первое начало термодинамики по существу является законом сохранения энергии в применении к термодинамическим процессам. Согласно первому началу, в закрытой системе энергия сохраняется, хотя и может приобретать различные формы.
Второе начало термодинамики именуется законом возрастания энтропии и гласит, что в замкнутой системе энтропия либо остается неизменной (если в системе протекают обратимые, равновесные процессы), либо возрастает (при неравновесных процессах).
Другими словами, невозможен переход теплоты от более холодного тела к более нагретому без каких-либо других изменений в системе или окружающей среде. На основании второго начала термодинамики была сформулирована модель «тепловой смерти» Вселенной, согласно которой все виды энергии во Вселенной постепенно переходят в тепловую энергию, а Вселенная неизбежно приближается к тепловой смерти.
Использование второго начала имеет глубокий естественнонаучный смысл. С его помощью описывается достаточно широкий класс явлений. Приведем несколько примеров: 1) если холодное тело вступило в контакт с нагретым, обмен теплотой происходит так, что в конце концов температуры обоих тел выравниваются; система становится совершенно однородной, а процесс идет лишь в одном направлении; 2) если из сосуда, часть которого заполнена газом, убрать перегородку, газ заполнит все пространство. Противоположный процесс не происходит: газ сам по себе не сконцентрируется в половине объема сосуда; 3) след, который самолет оставляет за собой в небе, постепенно размывается и исчезает. Во всех этих случаях системы эволюционируют к единственному конечному состоянию - состоянию теплового равновесия. Первоначальные структуры исчезают, заменяясь однородными системами. Именно такие явления описываются классической термодинамикой.
Накопившиеся данные позволили в рамках неравновесной термодинамики и синергетики сформулировать следующие постулаты: 1) процессы разрушения систем и их самоорганизации во Вселенной равноправны; 2) процессы нарастания сложности и упорядоченности имеют в основном единый алгоритм, который не зависит от природы систем, т.е. существует достаточно универсальный механизм самоорганизации в живой и неживой природе.