
- •1.Естествознание как элемент мировоззрения.
- •2.Взаимодействие двух культур.
- •3.Сциентизм и антисциентизм
- •4.Общие классификации наук. Специальные классификации наук.
- •5.Взаимоотношения философии и естествознания.
- •6.Философские основания естествознания
- •7.Знаковые системы
- •8.Сущность математики и история ее развития.
- •9.Математика как специфический язык естествознания
- •10.Приложение математики к разным отраслям естествознания
- •11.Религия как феномен культуры. История взаимоотношений религиозного и научного видов знания
- •12.Естествознание с точки зрения теологов.
- •13.Взаимоотношения естествознания и религии в современном мире
- •14.Подходы к изучению теории естествознания.
- •15.Кумулятивная модель развития науки
- •16.Научные революции в истории науки
- •17.«Кейс стади» как метод исследования.
- •20. Психологический контекст открытий
- •21. Этапы изменения характера науки
- •22. Научные революции Нового и Новейшего времени.
- •23. Типы научной рациональности
- •24. Краткий очерк истории физики
- •25. Краткий очерк истории химии
- •26. Краткий очерк истории геологии
- •27. Краткий очерк истории биологии
- •28. Краткий очерк истории географии
- •29. Познавание и проблема познаваемости мира
- •30. Понятие истины и ее критерии
- •31. Формы познания
- •32. Наука и научное знание
- •33. Функции научного познания
- •34.Научное и вненаучное знание
- •35. Критерии отграничения научного знания.
- •36. Виды средств и методов. Методология.
- •37. Система методов естествознания
- •38. Характеристика основных методов науки
- •39. Структура и уровни научного знания
- •40. Уровни научного знания и их соотношение.
- •41. Индуктивный и рационалистический пути познания
- •42. Проблема построения единой теории -
- •43. Социальный феномен науки
- •44. Научные сообщества
- •45. Идеалы и ценности науки. Социальная ответственность ученого
- •46. Системность и уровни системности труда
- •47. Эволюция системных представлений
- •48. Свойства и классификация систем
- •49. Информация как мера организованности системы
- •50. Понятие модели и моделирования
- •51. Классификация моделей
- •52. Основные типы моделей систем
- •53. Этапы системного исследования моделей
- •54. Самоорганизация и классическая термодинамика
- •55. Свойства самоорганизующихся систем
- •56. Примеры процессов, происходящих в самоорганизующихся системах
- •57. Становление эволюционных идей в науке
- •58. Основные принципы глобального эволюционизма
- •59. Закономерности и факторы эволюции
- •60.Особенности эволюционного процесса
- •62. Эволюция представлений о пространстве и времени
- •63. Пространство и время в различных отраслях естествознания
- •64. Самостоятельность пространства и времени
- •65.Мерность пространства и времени
- •66.Симметрия и асимметрия пространства и времени
- •67.Обратимость пространства и времени
- •68.Геометрические свойства пространство
- •69.Размеры микрообъектов
- •70.Размеры макрообъектов
- •71.Межзвездные пространства.
- •72.Малые интервалы времени
- •73.Исчисление лет и исторических эпох
- •74.Геологические интервалы времени
- •75.Космические интервалы времени
49. Информация как мера организованности системы
Информация — специфическая форма взаимодействия между объектами любой физической природы или, точнее, такой аспект взаимодействия, который несет сведения о взаимодействующих объектах. В сущности информация - мера организованности системы в противоположность понятию энтропии как меры неорганизованности. Представление об энтропии как мере неорганизованности было введено Р. Клаузиусом в связи с изучением термодинамических явлений. Л. Больцман дал статистическую интерпретацию энтропии, позволившую рассматривать энтропию как меру вероятности пребывания системы в конкретном состоянии. Больцман показал, что природные процессы стремятся перевести термодинамическую систему из состояний менее вероятных в состояния более вероятные, т.е. привести систему в равновесное состояние, для которого значения энтропии (неупорядоченности) максимальны. После построения в середине XX в. К.Э. Шенноном теории информации оказалось, что формула Больцмана для термодинамической энтропии и формула Шеннона для информационной энтропии тождественны. Таким образом, понятие энтропии приобрело более универсальный смысл в изучении систем различного происхождения. Изучение потоков информации в системах имеет очень большое значение. Так, если вещественные и энергетические потоки обеспечивают целостность системы и возможность ее существования, то потоки информации, переносимые сигналами, организуют все ее функционирование, управляют ею. Информационный анализ систем использует представление о сигналах - носителях информации, средстве перенесения информации в пространстве и времени. В качестве сигналов выступают состояния некоторых объектов: чтобы два объекта содержали информацию друг о друге, необходимо соответствие между их состояниями; тогда по состоянию одного объекта можно судить о состоянии другого. Не всякое состояние имеет сигнальные свойства, поскольку объект взаимодействует не только с тем объектом, информацию о котором требуется получить, но и с другими объектами, в результате чего соответствие состояний ослабевает. Условия, обеспечивающие установление и способствующие сохранению сигнального соответствия состояний, называют кодом, а посторонние воздействия, нарушающие это соответствие, - помехами или шумами. Нарушение соответствия состояний возможно не только вследствие помех, но и из-за рассогласования кодов взаимодействующих объектов.
Сигналы делятся на два типа:
1) статические сигналы, являющиеся стабильными состояниями физических объектов (например, книга, фотография, магнитофонная запись, состояние памяти компьютера, положение триангуляционной вышки и т.д.);
2) динамические сигналы, в качестве которых могут выступать динамические состояния силовых полей. Изменение состояния таких полей приводит к распространению возмущения, конфигурация которого во время распространения обладает определенной устойчивостью, что обеспечивает сохранение сигнальных свойств.
При обмене информацией между системами возникают специфические эффекты, полезные для анализа систем. Например, избыточность - явление не всегда отрицательное. При искажениях, выпадениях и вставках символов именно избыточность позволяет обнаружить и исправить ошибки. Важным понятием информационного характера является скорость передачи информации - количество информации, передаваемое в единицу времени. Скорость передачи информации по каналу связи зависит от многих факторов (энергия сигнала, количество символов в алфавите, избыточность, способ кодирования и декодирования и т.д.) и не превышает некоторого предела, называемого пропускной способностью канала.
Теория информации имеет большое значение для системного подхода. Ее конкретные методы и результаты позволяют проводить количественные исследования информационных потоков в изучаемой системе. Однако более важным является эвристическое значение основных понятий теории информации - неопределенности, энтропии, количества информации, избыточности, пропускной способности и др.