- •Предмет- пищ химия. Основные направления пищевой химии.
- •2. Общая концепция превращения макро- и микронутриентов.
- •3. Теория выделения, фракцион-ия компонентов сырья и пищ. Систем.
- •4. Научные основы технологии пищевых добавок.
- •5. Научные основы технологии бад.
- •6. Методы исслед-ия и анализа пищ. Систем, их компонентов.
- •2.Основные категории продовольственных проблем.
- •3.Современные представления о пищевых продуктах, их классификация.
- •4. Питание. Основные группы пищевых веществ
- •5. Теория сбалансированного питания.
- •6. Теория адекватного питания.
- •7. Основы рационального питания, три принципа.
- •8 Антипищевые в-ва. Антипищ в-ва, содержащиеся в пище и пути устранения их влияния
- •11 Пищ ценность продуктов растительного происхождения и ее изменения после техн обработки
- •12. Проблема белкового дефицита на земле.
- •13. Функции аминокислот в организме.
- •14. Назаменимые аминокислоты. Пищевая и биол-ая ценность белков. Аминокилотный скор.
- •15. Новые формы белковой пищи.
- •19. Белки пищевого сырья: белки злаков.
- •19. Белки пищевого сырья: белки бобовых.
- •19. Бели пищевого сырья: белки картофеля.
- •19. Бели пищевого сырья: белки мяса.
- •19. Бели пищевого сырья: белки молока.
- •17. Превращение белков в технологическом процессе.
- •20 Метаболизм аминокислот
- •27. Усваиваемые углеводы. Физиологич-ое значение.
- •27. Неусваиваемые углеводы. Физиологическое значение.
- •27. Функции углеводов в пищевых продуктах.
- •29. Реакция гидролиза
- •29 Р. Дегидратация и термическая деградация.
- •30,31,32 Образование глюкозамина- нач стадия р. Майяра
- •35,36 Окисление альдоз в альдоновые, дикарбоновые кислоты при техн обработки.
- •21 22 23. Строение и состав липидов.
- •22. Реакции ацилглицеринов с участием сложноэфирной группы: гидролиз.
- •22. Реакции ацилглицеринов с участием сложноэфирной группы: переэтерификация.
- •23. Реакции ацилглицеринов с участием углеводородного радикала: гидрирование.
- •23. Реакции ацилглицеринов с участием углеводородного радикала: окисление. Образование первич. И вторич. Продуктов.
- •24. Пищевая порча жиров. Кислотное и иодное число. Антиоксиданты.
- •39. Водорастворимые витамины. Физиол-ое значение.
- •40. Жирорастворимые витамины. Физиологическое значение.
- •41. Потери витаминов в ходе технологической обработки.
- •42. Способы сохранения витаминов. Витаминизация пищи
- •43. Ферменты. Классификация и номенклатура.
- •43. Оксидоредуктазы.Овр-ферменты
- •44. Гидролитические ферменты.
- •48. Вода. Физические свойства и строение воды и льда.
- •45. Свободная и связанная вода.
- •46. Взаимодействие вода – растворенное вещество: с ионами.
- •46. Взаимодействие вода – растворенное вещество: с неполярными связями.
- •46. Взаимодействие вода – растворенное вещество: с полярными группами ( с образованием водородных связей ).
- •47. Активность воды.
29. Реакция гидролиза
Во многих пищевых производствах имеет
место гидролиз пищевых гликозидов,
олигосахаридов и полисахаридов. Гидролиз
зависит от многих факторов: рН,
температуры, аномерной конфигурации,
комплекса ферментов
.
Гидролиз крахмала. 1. При гидролизе крахмала под действием кислот сначала имеет место ослабление и разрыв ассоциативных связей между макромолекулами амилозы и амилопектина. Это сопровождается нарушением структуры крахмальных зерен и образованием гомогенной массы.
Кислотный гидролиз долгое время был главным при получении глюкозы из крахмала. Этот способ имеет ряд существенных недостатков, которые связаны с использованием высоких концентраций кислот и высокой температуры, что приводит к образованию продуктов термической деградации и дегидратации углеводов и реакции трансгликозилирования.
2. Крахмал гидролизуется также и под действием амилолитичес-ких ферментов. К группе амилолитических ферментов относятся а- и р-амилаза, глюкоамилаза, пуллуланаза и некоторые другие ферменты. Амилазы бывают двух типов: эндо- и экзоамилазы.
Четко выраженной эндоамилазой является а-амилаза, способная к разрыву внутримолекулярных связей в высокополимерных цепях субстрата. Глюкоамилаза и р-амилаза являются экзоамилазами, т. е. ферментами, атакующими субстрат с нередуцирующего конца. а-Амилаза, действуя на целое крахмальное зерно, атакует его, разрыхляя поверхность и образуя каналы и бороздки, то есть как бы раскалывает зерно на части.
β-Амилаза (а-1,4-глюканмальтогидролаза) является экзоамилазой, проявляющей сродство к предпоследней а-(1,4)-связи с нередуцирующего конца линейного участка амилозы или амилопектина.
Глюкоамилаза а-(1,4)-глюканглюкогидролаза является экзофермен-том, катализирующим последовательно отщепление концевых остатков a-D-глюкозы с нередуцирующего конца крахмальной цепи. Многие глю-коамилазы обладают способностью так же быстро, как и а-1,4-связь, гид-ролизовать а-1,6-глюкозидные связи.
Гкдролиз сахарозы. Поскольку сахароза как сырье используется во многих производствах, необходимо учитывать ее исключительную способность к гидролизу. Это может иметь место при нагревании в присутствии небольшого количества пищевых кислот. Ферментативный гидролиз сахарозы под действием β -фруктофурано-зидазы (сахаразы, инвертазы) играет положительную роль в ряде пищевых технологий. При действии β-фруктофуранозидазы на сахарозу образуются глюкоза и фруктоза.
Ферментативный гидролиз некрахмалистых полисахаридов. Этот гидролиз имеет место под действием ферментов целлюлолитического, ге-мицеллюлазного и пектолитического комплекса.
29 Р. Дегидратация и термическая деградация.
При переработке пищевого сырья в пищевые продукты эти реакции занимают важное место. Они катализируются кислотами и щелочами, и многие из них идут по типу (β-элиминации. Пентозы как главный продукт дегидратации дают фурфурол, гексозы - оксиметилфурфурол и другие продукты.
30,31,32 Образование глюкозамина- нач стадия р. Майяра
Реак-ия Майяра (меланоидинообразование) явл-ся первой стадией реакции неферментативного потемнения пищевых продуктов. Для реакции треб-ся наличие редуцирующего сахара, аминного соединения и воды.
31 Глюкозоамин подвергается перегруппировке по Амадори и переходит в аминокислоту (рис 3.17)
Влажность. Изучение влияния влажности на систему D-ксилоза + глицин показало, что при очень низком и при очень высоком содержании влаги (а„= 0 или aw= 1) не наблюдается потемнения, максимальное же потемнение имеет место при промежуточных влагосодержаниях (см. гл. 10).
Температура. Наблюдается увеличение скорости реакции при повышенных температурах. Повышение температуры на 10°С дает увеличение скорости в 2—3 раза.
Ионы металлов. Установлено повышение интенсивности потемнения в присутствии ионов меди и железа (Fe3+>Fe2+), ионы Na+ эффекта не давали.
Отсюда можно предположить, что роль ионов ряда металлов в реакции потемнения связана с окислительно-восстановительными процессами.
Структура сахара. Степень образования пигментов прямо пропорциональна количеству открытых цепей (свободный карбонил) сахара в растворе.
Характер аминокислоты. Чем дальше расположена аминогруппа от карбоксильной, тем активнее данная аминокислота в реакции Майара.
