
- •1 Понятие измерительная информация, единицы измерений.
- •2 Средства и методы измерений. Их виды, классификация.
- •3 Погрешности измерений.
- •4 Структурные схемы измерительных приборов, схемы последовательного преобразования, дифференциальные схемы.
- •5 Логометрические, компенсационные измерительные схемы.
- •6Пространственно-временные явления; измерение времени.
- •7 Измерение угловых и линейных перемещений. Реостатные измерительные преобразователи.
- •8 Электростатические (емкостные) измерительные преобразователи
- •9 Индуктивные преобразователи перемещения. Принцип работы, схемы включения.
- •11 Трансформаторные преобразователи с подвижной обмоткой.
- •12Принципы измерений линейных и угловых скоростей.
- •13 Механические и фотоэлектрические тахометры.
- •14 Тахометрические преобразователи постоянного тока.
- •15 Индукционные тахогенераторы.
- •16 Резистивные явления. Терморезистивные преобразователи.
- •17 Тензорезистивные преобразователи. Принцип работы.
- •18 Применение тензорезисторов. Схемы включения, погрешности.
- •19Преобразователи работающие с использованием эффекта Холла
- •31 Основные понятия об измерение количества вещества
- •32 Расходомеры переменного перепада давления
- •34 Электромагнитные расходомеры
- •35 Ультразвуковые расходомеры
- •27 Бесконтактная пирометрия, закон Планка.
- •28 Радиационные пирометры.
- •29 Яркостные пирометры.
- •25 Термоэлектрические преобразователи, принцип работы, применение.
- •26 Схемы включения термоэлектрических преобразователей, их погрешности.
- •23 Фотоэлектрические приемники излучения, принцип работы, типы.
- •20 Параметры и характеристики преобразователей Холла
- •21 Магниторезистивные преобразователи.
- •36 Вихревые расходомеры
- •33 Тахометрические расходомеры.
35 Ультразвуковые расходомеры
Эти методы основаны на изменении скорости ультразвуковых колебаний в подвижной среде, которая равна геометрической сумме скорости среды и скорости звука в данной неподвижной среде, которая известна. Если ультразвуковые колебания распространяются в неподвижной среде со скоростью с, то в той же среде, движущейся со скоростью , они будут распространяться в направлении движения потока со скоростью с + cos(), а против потока — со скоростью с — cos(), где — угол между направлениями потока и ультразвукового излучения
Времяимпульсный метод основан на измерении разности времени прохождения ультразвуковых импульсов по движению потока и против него
Работа ультразвукового расходомера, основанного на частотно-импульсном методе, аналогична работе частотного расходомера действие, которого основано на методе ядерного магнитного резонанса. Каждый излучатель посылает импульс ультразвуковых колебаний в момент прихода предыдущего импульса на соответствующий приемник. Разность частот двух работающих таким образом автогенераторов пропорциональна измеряемому расходу:
Всем ультразвуковым методам измерений расхода присуща методическая погрешность, обусловленная отличием измеряемой этими методами скорости движения среды, осредненной по пути от излучателя до приемника ультразвуковых колебаний, от скорости движения среды, осредненной по площади сечения трубопровода. Эта погрешность зависит от структуры потока, которая определяется рядом факторов, например шероховатостью трубопровода, физико-химическими свойствами перемещающейся среды и др.
27 Бесконтактная пирометрия, закон Планка.
Пирометрические методы измерений температуры охватывают широкий диапазон температур — от 173 до 6000 К. Эти методы основаны на определении параметров теплового излучения объекта без нарушения его температурного поля. Тепловое излучение представляет собой электромагнитное излучение, возбуждаемое тепловым движением атомов и молекул в твердых, жидких и газообразных веществах. При температурах выше 400О К излучение вызывается процессами диссоциации и ионизации.
Теория пирометрических методов измерений температуры основана на законах, устанавливающих связь между излучением абсолютно черного тела (АЧТ) и его температурой
Закон Планка устанавливает связь между абсолютной температурой и спектральным распределением потока излучения (светимости) АЧТ:
|
(12-2) |
Где
- спектральная плотность потока излучения
При
малых значениях
можно вместо выражения пользоваться
законом Вина
|
Зависимость
|
изображена на рис.
Полная энергия, излучаемая с единицы поверхности АЧТ в единицу времени, определяется законом Стефана – Больцмана
,
где
– постоянная Стефана - Больцмана.
Как видно, с увеличением температуры максимумы кривых сдвигаются в ультрафиолетовую область спектра, т. е. в сторону более коротких волн. Сдвиг максимума излучения подчиняется закону смещения Вина, установленному в виде двух зависимостей:
Приборы для измерения температур объектов по их тепловому электромагнитному излучению называются пирометрами.
Пирометры прямого преобразования обычно состоят из оптической системы, приемника излучения, измерительной цепи с вторичным прибором.