Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kurs.rtf
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
23.54 Mб
Скачать

Контрольные вопросы

1. Конструктор отчетов службы Reporting Services можно использовать для импорта отчетов:

а) из внешних генераторов отчётов Crystal Reports;

б) из баз данных совместимых с OLE DB и ODBC;

в) из баз данных (.fdb) InterBase/Firebird;

г) из баз данных (.mdb) и проектов (.adp) Access 2003.

2. Наиболее простые отчёты создаются с применением:

а) импорта из базы данных Access 2003 (Access 2007);

б) построителя (мастера) отчётов;

в) конструктора отчётов службы Reporting Services;

г) редактора отчётов в составе Reporting Services.

3. Отчеты, созданные с применением Reporting Services, публикуются на сервере отчетов в виде:

а) файлов формата .html;

б) файлов формата .rdl;

в) файлов формата .pdf;

г) фалов формата .doc.

4. Какие наборы источников данных, включают все источники, которые можно использовать для создания отчётов:

а) БД, совместимые с OLE DB и ODBC, и БД SQL Server;

б) источники данных, совместимые с OLE DB и ODBC;

в) БД SQL Server, создаваемые специально для отчёта;

г) кубов Analysis Services, БД SQL Server и БД, совместимых с OLE DB и ODBC.

5. С помощью построителя отчетов можно создавать отчёты только:

а) табличной, матричной и свободной формы;

б) табличной, матричной формы и в форме диаграмм;

в) табличной форме, в форме диаграмм и детализации;

г) табличной, матричной форме и в форме детализации.

Литература

1. Microsoft SQL Server 2008: Data mining – интеллектуальный анализ данных. Пер. с англ. / Дж. Макленнен, Чж. Танг, Б. Криват. – БХВ-Петербург. 2009. – 720 с.

2. Бергер А.Б. Microsoft SQL Server 2005 Analysis Services. OLAP и многомерный анализ данных / Бергер А.Б, Горбач И.В., Меломед Э.Л, Щербинин В.А., Степаненко В.П. / Под общ. Ред. А.Б. Бергера, И.В. Горбач. – СПб.: БХВ-Петербург, 2007. – 928 с.

Глоссарий

Настоящий глоссарий поясняет содержательный смысл основных понятий оперативного и интеллектуального анализа данных. Все термины в глоссарии расположены в алфавитном порядке, в скобках приводятся эквиваленты каждого из терминов на английском языке.

Ассоциативные правила (Association Rules) – определяются в процессе анализа часто встречающихся наборов объектов в большом множестве подобных наборов. Задача поиска ассоциативных правил является частным случаем задачи классификации.

Атрибут гранулярности – Атрибут измерения, определяющий гранулярность в отдельном измерении. В соответствие с этим атрибутом производится загрузка данных в группу мер. По умолчанию атрибутом гранулярности является ключевой атрибут измерения.

Витрина данных (Data Mart) – Упрощённый вариант хранилища данных, содержащий объединённые данные определённой тематики.

Гранулярность факта (Granularity Fact) – Определяется списком атрибутов, определяющих гранулярность в каждом измерении группы мер. При изменении атрибута гранулярности изменяется объём данных, загружаемых в группу мер.

Дерево решений (Decision tree) – Способ представления правил классификации в иерархической, последовательной структуре. Классификационные правила состоят из условий и заключений: если (условие), то (заключение).

Добыча данных (Data mining) – Процесс интеллектуального анализа данных с целью выявления скрытых закономерностей и систематических взаимосвязей между переменными.

Измерение базы данных (Database Dimension) – Основной вид измерения в оперативном и интеллектуальном анализе данных, на котором основаны измерения куба и группы мер.

Измерение группы мер  – Список измерений куба, которые принадлежат группе мер (факту). Если списки измерений куба и измерений группы мер совпадает, то куб и группа мер имеют одну и ту же размерность.

Измерения куба (Dimension cub) – Описывают элементы данных, используемые в многомерном пространстве анализируемых данных. Самым простым способом задания измерений куба является перечисление измерений базы данных, включаемых в создаваемый куб.

Интерфейс прикладного программирования (XML for Analysis) ­– Интерфейс, основанный на протоколе SOAP и предназначенный для обеспечения взаимодействия через Интернет клиентов и поставщиков данных.

Источник данных (Data Sourse) – Объект, определяющий способ подключения службы анализа данных (SQL Server Analyses Services) к реляционной базе данных и другим средствам хранения данных.

Иерархия атрибутов – Иерархия атрибута определяется уровнем Все (All) и уровнем атрибута-источника. Применяется иерархия атрибутов при необходимости сослаться на атрибут вне иерархии или отсутствии пользовательской иерархии измерений.

Иерархии измерений – Определяет маршруты навигации (navigation path) и метод доступа к данным в многомерной модели. Иерархия состоит из атрибутов измерения и элементов атрибутов, расположенных в убывающей (возрастающей) последовательности.

Классификация (Classification) – Определение значения одного из параметров анализируемого объекта на основании значений других параметров. При этом определяемый параметр называют зависимой переменной, а параметры, влияющие на его значение, – независимыми переменными.

Кластеризация (Clustering) – Процедура разделения исследуемого множества объектов, удовлетворяющих условию близости, на группы объектов, которые называют кластерами (cluster).

Концептуальная модель данных – Модель данных в терминах конкретной предметной области, описывающая данные, структуру данных, организацию, правила доступа, методы расчётов и преобразования.

Куб измерения – Куб, содержащий одно измерение и не содержащий меры. Куб измерения используется для доступа к информации, содержащейся в измерении базы данных.

Мера близости (Distance) – Расстояние между объектами заданного множества объектов, характеризуемых набором параметров. На основе оценки меры близости производят включение объектов в один кластер.

Многомерная модель данных – Многомерная структура с определенными соотношениями, правилами расчета элементов на основе имеющихся данных. Многомерная структура с определенными соотношениями, правилами расчета элементов на основе имеющихся данных.

Многомерный OLAP (Multidemensional OLAP) – Определяет многомерность некой структуры данных, подразумевает наличие трех или более независимых измерений.

Гибридный OLAP (Hybrid OLAP) – Агрегатные структуры хранит в многомерном хранилище, сами данные в реляционной базе данных.

Оперативная обработка транзакций (On-Line Transaction Processing) – Обработка включает ввод, структурированное хранение и обработку оперативной информации (операций, документов) в режиме реального времени.

OLAP-сервер – серверное приложение, обеспечивающее управление и доступ к OLAP-кубам. Существует два основных способа хранения продуктами OLAP данных для многомерного анализа. Первый способ – многомерный сервер баз данных,  второй способ – обслуживание данных происходит в реляционных БД.

Представление источника данных (Data source view, DSV) – абстрактное представление данных на клиентской стороне при проведении интеллектуального анализа данных.

Прикладная модель данных – Модель, созданная с помощью Языка Многомерных Выражений и описывающая формат данных, в котором данные передаются аналитически приложениям.

Реляционная модель данных – Модель данных, построенная на основе набора конечных отношений различной арности между определённым множеством элементарных данных. Над конечными отношениями возможно осуществление алгебраических операций.

Реляционный OLAP (Relational OLAP) – Программный продукт предназначенный для многомерного анализа данных, метаданных и вычисленных агрегатов. Для физической реализации многомерной модели данных используется реляционный сервер баз данных.

Система поддержки принятия решений (Decision Support System) – Система анализа данных, построения прогноза и выполнения вычислений любой сложности, необходимых для принятия решения.

Структурированный язык запросов (Structured Query Language) – Международный стандартный язык запросов для определения доступа к реляционным базам данных.

Унифицированная модель данных (Unified Dimensional Model) – Единая модель данных, обеспечивающая доступ клиентских приложений к различным реляционным и многомерным базам данных.

Физическая модель данных ­– Модель описывает способ хранения данных на физических носителях данных. Основным пользователем физической модели данных является администратор базы данных.

Хранилище данных (Data Warehouse) – предметно-ориентированный, интегрированный , неизменчивый, поддерживающий хронологию набора данных и организованный для поддержки принятия управленческих решений.

XML for Analysis – Расширение языка XML для обращения к многомерным БД.

Язык интеллектуального анализа данных (Data Mining Extensions to SQL, DMX) – Язык запросов для выполнения операций интеллектуального анализа данных.

Язык многомерных выражений (Multidimensional Expressions, MDX) – SQL-подобный язык, предназначенный для работы с многомерными базами данных.

Язык разметки (eXtensible Markup Language, XML) –Язык для осуществления разметки текстовой информации и динамического обмена данными между приложениями в Internet.

150

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]