
- •Определение средней интенсивности трафика. Единица измерения интенсивности трафика.
- •Измерения трафика. Диаграмма Ганта. Нахождение объема пропущенного трафика. Средняя интенсивность трафика.
- •Нормальная оценка интенсивности трафика.
- •4. Диаграмма Кивиата для телефонной линии.
- •5. Как определяется объем трафика и интенсивность трафика?
- •2) Пусть в течение времени т фиксируются длительности ti всех n занятий выходов некоторого пучка, тогда трафик определяют так:
- •6. Программы для мониторинга сетей. Функции и возможности.
- •7. Основные понятия модели потоков событий ( стационарность, последействие, ординарность, интенсивность потока, параметр потока).
- •8 Что такое пуассоновский поток? Перечислите его свойства, параметры.
- •9 Определение примитивного потока
- •20 Примеры самоподобных процессов.
- •21. Основные принципы моделирования потока событий.
- •23. Распределение Вейбулла: математическое ожидание, дисперсия, абсолютные моменты, центральные моменты.
- •24. Самоподобные (фрактальные) модели трафика.
- •25. Поток Эрланга первого, второго и третьего порядка.
- •26. Примеры простейших самоподобных процессов.
- •27. Понятие фрактала. Основное свойство фракталов. Виды фракталов.
- •28. Нормированное фрактальное броуновское движение с параметром Херста.
- •29. Фрактальный гауссовский шум.
- •30. Генерирование потока событий с равномерным распределением интервала между событиями.
- •31. Генерирование потока событий, распределенных по закону, отличному от равномерного.
- •32. Модели потоков событий. Метод удачного случайного приращения.
- •33. Модели потоков событий. Метод случайного смещения промежуточных точек
- •34. Модели систем массового обслуживания.
- •35. Задачи анализа и проектирования телекоммуникационных сетей и систем
- •36. Понятие масштабной модели, её назначение и возможности. Анализ недостатков данной модели
- •37. Физическая модель сети типа прототип, её назначение и возможности. Анализ недостатков данной сети.
- •41. Формула Литла для определения среднего числа заявок в системе.
- •45. Смо с полнодоступными и неполнодоступными серверами.
- •47. Анализ механизма приоритетного обслуживания (в лекциях тема 7).
- •46. Анализ работы смо без приоритетов.
- •48. Виды различных дисциплин обслуживания требований.
- •49. Определение среднего времени ожидания в очереди для меченного требования
- •50. Определение консервативной смо. Формула для определения взвешенной суммы времени ожидания в очереди
- •51. Имитационные модели смо, основные задачи построения программы имитации
- •52. Условия, накладываемые на быстродействие алгоритмов имитации
- •68. Непрерывные цепи Маркова.
- •69.Анализ системы «гибели-размножения». Графическая интерпретация процессов переходов в непрерывной цепи Маркова.
- •70. Диаграмма интенсивностей переходов для непрерывной цепи Маркова.
- •71.Уравнения равновесия или баланса.
- •72. Анализ системы массового обслуживания типа m/m/1, диаграмма интенсивностей переходов в этой системе.
- •73 Стационарное распределение вероятностей состояний в системе m/m/1, зависимость среднего времени пребывания в системе в зависимости от коэффициента использования (нагрузки).
- •75. Сравнение характеристик качества обслуживания двухсерверной системы с односерверной.
- •81. Анализ характеристик качества обслуживания системы.
- •85.Модель Энгсета. Схема m-серверной системы с полными потерями
- •86. Диаграмма интенсивностей переходов для m-серверной системы с полными потерями, соответствующей модели Энгсета
- •90 Система с самоподобным входным потоком и детерминированным временем обслуживания
- •91 Расчет основных характеристик системы с самоподобным входным потоком и детерминированным временем обслуживания.
- •92 Анализ телекоммуникационных систем.
- •93. Расчет необходимого числа соединительных линий.
- •95. Анализ сетей массового обслуживания.
- •96 Марковские сети без потерь
- •97 Пример замкнутой сети с тремя узлами. Диаграмма переходов для этой сети.
- •98 Сети с блокировками (потерями). Метод Ли.
- •99. Сравнительный анализ расчетов соединительных линий
- •100 Анализ многозвеньевых коммутационных схем
68. Непрерывные цепи Маркова.
69.Анализ системы «гибели-размножения». Графическая интерпретация процессов переходов в непрерывной цепи Маркова.
Это означает, что в каждый последующий момент времени распределение вероятностей состояния системы зависит только от предыдущего состояния и входного потока.
суммарное число требований в очереди и в сервере: k = Nq+Ns и записать уравнение состояний в виде:
Конкретизация вида функции в правой части может быть получена из простых соображений. Система, которую мы рассматриваем, может интерпретироваться в терминах биологического плана как некоторая популяция, численностью к, в которой в каждый малый интервал времени с заданной вероятностью способен либо появиться новый экземпляр (рождение члена популяции), либо исчезнуть ровно один экземпляр с заданной вероятностью. Альтернативой может быть сохранение численности на этом интервале неизменной. В литературе такую систему называют процессом "гибели-размножения". На рис. 5.2 приведена графическая иллюстрация поведения описанной системы.
70. Диаграмма интенсивностей переходов для непрерывной цепи Маркова.
В соответствие этой системе уравнений можно поставить наглядную диаграмму интенсивностей переходов, которая аналогична диаграмме переходов для дискретных цепей Маркова (рис. 5.3).
Окружностям здесь соответствуют дискретные состояния, а дуги определяют интенсивности потоков вероятности (а не вероятности!) переходов от одного состояния к другому.
71.Уравнения равновесия или баланса.
Имеет место своеобразный "закон сохранения"-, разность между интенсивностью, с которой система попадает в состояние к, и интенсивностью, с которой система покидает это состояние, должна равняться интенсивности изменения потока в это состояние (производной по времени).
Применение закона сохранения позволяет получать уравнения для любой подсистемы марковской цепи типа процесса "гибели-размножения". Особенно эффективным оказывается построение решений в стационарном, установившемся режиме, когда можно полагать, что вероятности в произвольный, достаточно отдаленный момент времени, остаются постоянными.
Приравнивая производную по времени нулю, получаем систему разностных уравнений:
Таким образом, нам удалось построить математическую модель, описывающую весьма широкий класс СМО, для которой найдено решение в замкнутой форме.