
- •Определение средней интенсивности трафика. Единица измерения интенсивности трафика.
- •Измерения трафика. Диаграмма Ганта. Нахождение объема пропущенного трафика. Средняя интенсивность трафика.
- •Нормальная оценка интенсивности трафика.
- •4. Диаграмма Кивиата для телефонной линии.
- •5. Как определяется объем трафика и интенсивность трафика?
- •2) Пусть в течение времени т фиксируются длительности ti всех n занятий выходов некоторого пучка, тогда трафик определяют так:
- •6. Программы для мониторинга сетей. Функции и возможности.
- •7. Основные понятия модели потоков событий ( стационарность, последействие, ординарность, интенсивность потока, параметр потока).
- •8 Что такое пуассоновский поток? Перечислите его свойства, параметры.
- •9 Определение примитивного потока
- •20 Примеры самоподобных процессов.
- •21. Основные принципы моделирования потока событий.
- •23. Распределение Вейбулла: математическое ожидание, дисперсия, абсолютные моменты, центральные моменты.
- •24. Самоподобные (фрактальные) модели трафика.
- •25. Поток Эрланга первого, второго и третьего порядка.
- •26. Примеры простейших самоподобных процессов.
- •27. Понятие фрактала. Основное свойство фракталов. Виды фракталов.
- •28. Нормированное фрактальное броуновское движение с параметром Херста.
- •29. Фрактальный гауссовский шум.
- •30. Генерирование потока событий с равномерным распределением интервала между событиями.
- •31. Генерирование потока событий, распределенных по закону, отличному от равномерного.
- •32. Модели потоков событий. Метод удачного случайного приращения.
- •33. Модели потоков событий. Метод случайного смещения промежуточных точек
- •34. Модели систем массового обслуживания.
- •35. Задачи анализа и проектирования телекоммуникационных сетей и систем
- •36. Понятие масштабной модели, её назначение и возможности. Анализ недостатков данной модели
- •37. Физическая модель сети типа прототип, её назначение и возможности. Анализ недостатков данной сети.
- •41. Формула Литла для определения среднего числа заявок в системе.
- •45. Смо с полнодоступными и неполнодоступными серверами.
- •47. Анализ механизма приоритетного обслуживания (в лекциях тема 7).
- •46. Анализ работы смо без приоритетов.
- •48. Виды различных дисциплин обслуживания требований.
- •49. Определение среднего времени ожидания в очереди для меченного требования
- •50. Определение консервативной смо. Формула для определения взвешенной суммы времени ожидания в очереди
- •51. Имитационные модели смо, основные задачи построения программы имитации
- •52. Условия, накладываемые на быстродействие алгоритмов имитации
- •68. Непрерывные цепи Маркова.
- •69.Анализ системы «гибели-размножения». Графическая интерпретация процессов переходов в непрерывной цепи Маркова.
- •70. Диаграмма интенсивностей переходов для непрерывной цепи Маркова.
- •71.Уравнения равновесия или баланса.
- •72. Анализ системы массового обслуживания типа m/m/1, диаграмма интенсивностей переходов в этой системе.
- •73 Стационарное распределение вероятностей состояний в системе m/m/1, зависимость среднего времени пребывания в системе в зависимости от коэффициента использования (нагрузки).
- •75. Сравнение характеристик качества обслуживания двухсерверной системы с односерверной.
- •81. Анализ характеристик качества обслуживания системы.
- •85.Модель Энгсета. Схема m-серверной системы с полными потерями
- •86. Диаграмма интенсивностей переходов для m-серверной системы с полными потерями, соответствующей модели Энгсета
- •90 Система с самоподобным входным потоком и детерминированным временем обслуживания
- •91 Расчет основных характеристик системы с самоподобным входным потоком и детерминированным временем обслуживания.
- •92 Анализ телекоммуникационных систем.
- •93. Расчет необходимого числа соединительных линий.
- •95. Анализ сетей массового обслуживания.
- •96 Марковские сети без потерь
- •97 Пример замкнутой сети с тремя узлами. Диаграмма переходов для этой сети.
- •98 Сети с блокировками (потерями). Метод Ли.
- •99. Сравнительный анализ расчетов соединительных линий
- •100 Анализ многозвеньевых коммутационных схем
49. Определение среднего времени ожидания в очереди для меченного требования
Будем использовать далее следующие обозначения для среднего значения времени ожидания в очереди требований из приоритетного класса p - Wp, и среднего времени пребывания в системе для требований этого класса - Tp:
Рассмотрим процесс с момента поступления некоторого требования из приоритетного класса p. Будем далее называть это требование меченым. Первая составляющая времени ожидания для меченого требования связана с требованием, которое оно застает в сервере. Эта составляющая равна остаточному времени обслуживания другого требования. Обозначим теперь и будем использовать это обозначение и далее, среднюю задержку меченого требования, связанную с наличием другого требования на обслуживании W0. Зная распределение времени между соседними поступлениями входных требований для каждого приоритетного класса, можно всегда вычислить эту величину. В нашем предположении пуассоновского закона для потока заявок каждого класса можно записать
Вторая составляющая времени ожидания для меченого требования определяется тем, что перед меченым требованием обслуживаются другие требования, которые меченое требование застало в очереди. Обозначим далее число требований из класса i, которое застало в очереди меченое требование (из класса p) и которые обслуживаются перед ним Nip. Среднее значение этого числа будет определять величину среднего значения этой составляющей задержки
Третья составляющая задержки связана с требованиями, поступившими после того как пришло меченое требование, однако получившими обслуживание раньше его. Число таких требований обозначим Mip. Среднее значение этой составляющей задержки находится аналогично и составляет
Складывая все три составляющие, получаем, что среднее время ожидания в очереди для меченого требования определяется формулой
Очевидно, что независимо от дисциплины обслуживания число требований, Nip и Mip в системе не может быть произвольным, поэтому существует некоторый набор соотношений, связывающий между собой задержки для каждого из приоритетного класса. Важность этих соотношений для СМО позволяет называть их ЗАКОНАМИ СОХРАНЕНИЯ. Основой законов сохранения для задержек является тот факт, что незаконченная работа в любой СМО в течение любого интервала времени занятости не зависит от порядка обслуживания, если система является консервативной (требования не исчезают внутри системы и сервер не простаивает при непустой очереди).
Распределение времени ожидания существенно зависит от порядка обслуживания, но если дисциплина обслуживания выбирает требования независимо от времени их обслуживания (или любой меры, зависящей от времени обслуживания), то распределение числа требований и времени ожидания в системе инвариантно относительно порядка обслуживания.
50. Определение консервативной смо. Формула для определения взвешенной суммы времени ожидания в очереди
Незаконченная работа в любой СМО в течение любого интервала времени занятости не зависит от порядка обслуживания, если система является консервативной (требования не исчезают внутри системы и сервер не простаивает при непустой очереди).
Для СМО типа M/G/1 можно показать, что для любой дисциплины обслуживания должно выполняться следующее важное равенство
Это равенство означает, что взвешенная сумма времен ожидания никогда не изменяется, независимо от того, насколько сложна или искусно подобрана дисциплина обслуживания. Если удается сократить задержку для одних требований, то она немедленно возрастет для других.
Для более общей системы с произвольным распределением времени поступления требований G/G/1 закон сохранения может быть записан в виде
Общий смысл этого соотношения таков: взвешенная сумма времен задержки остается постоянной. Просто в правой части стоит разность средней незавершенной работы и остаточного времени обслуживания. Если предположить пуассоновский характер входного потока, то выражение для незавершенной работы можно записать в виде