Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры-тау-экзамен.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
2.8 Mб
Скачать

39 Передаточные функции разомкнутой и замкнутой импульсной сау.

Характеристические уравнения систем

Типовая структура замкнутой САУ, передаточная функция и характеристическое уравнение разомкнутой системы.

– передаточная функция разомкнутой системы.

Для линейных систем применим принцип суперпозиции воздействий (независимых воздействий).

- Передаточная функция замкнутой системы относительно регулирующей величины по задающему воздействию.

– передаточная функция замкнутой системы относительно задающей величины по возмущающему воздействию.

– передаточная функция замкнутой системы относительно ошибки регулирования, по задающему воздействию.

– передаточная функция замкнутой системы относительно ошибки регулирования, по возмущающему воздействию.

– передаточная функция разомкнутой системы

– Характеристическое уравнение разомкнутой системы получается приравниванием к нулю знаменателя передаточной функции разомкнутой системы.

Для нахождения характеристического уравнения замкнутой системы необходимо также приравнять к нулю знаменатель передаточной функции замкнутой системы

Характеристическое уравнение замкнутой системы может быть получено приравниванием к 0 суммы числителя и знаменателя передаточной функции разомкнутой системы.

41. Частотные критерии устойчивости:( Михайлова, Найквиста и т.д)

Принцип аргумента: Пусть задано хар-е ур-е D(p)=anpn+ an-1pn-1+…+ a1p+ a0=0, Это уравнение можно записать через его корни D(p)= an(p-λ1) * (p- λ 2)*(p- λ 3)…(p- λ n)=0, λ 1, λ 2, λ 3, λ n – корни полинома D(p). Сделаем подстановку p=jω и перейдем в частотную область D(jω)= an(jω -λ1 ) * (jω - λ 2)*( jω - λ 3)…( jω - λ n)=0. Представим элементарный множитель (jω-λ i) в виде вектора на комплексной плоскости и рассмотрим его поведение при изменении частоты ω от -∞ до +∞.

Д ля корня с отриц. вещественной частью вектор jω-λi будет поворачиваться против часовой стрелки в положит. направлении на 1800. Обозначим этот разворот как приращение аргумента

элементарного вектора: ∆arg(jω-λi)=+π, ω(-∞;+∞). Для корня с положит. веществ. частью это приращение составит: ∆arg(jω-λi)=-π. Если система устойчива, то все n-корней лежат слева мнимой оси и приращение аргумента функции D(jω). ∆arg[D(jω)]=+π*n, (-∞;+∞). Если рассматривать только положит. значение частоты т.е ω(0,+∞) то приращение составит: ∆arg[D(jω)]=(π/2)*n. Критерий уст-ти Михайлова: Используя принцип аргумента исследуем поведение ф-ии D(jω) при изменении частоты ω(0;+∞). D(jω)=an(jω)n+ an-1(jω)n-1+…+ a1(jω)+ a0=R(ω)+jQ(ω). Для каждого значения частоты ω имеем вектор, который будет поворач. при изменении частоты. Траектория конца вектора назыв. траекторией годографа Михайлова. В соотв. с принципом аргумента можно сфор. кр. Михайлова: Def САУ будет устойчива если годограф функции D(jω) начинается на положительной вещественной полуоси и проходит послед. n-квадрантов нигде не нарушая порядок следоват. квадрантов и не обращаясь в 0.

Условие нахождения системы на границе устойчивости: D(jω)=0,при {R(∞)=0Q(∞)=0 D(p)= T022p3+T01p2+p+ КnK0, D(jω)=

T 022(jω)3 +T01(jω)2+(jω)+ КnK0=(КnK0-T01ω2)- jω ( T022ω2 -1). {КnK0-T01ω2=0 T022ω2 –1, ω2= КnK0/T01, (T022nK0)/ T01=> Knкрит= T01/T022K0. Формулировка критерия Мих-ва может быть изменена:

Д ля устойчивой САУ годограф начин. на положит. веществ. полуоси и должен поочередно пересекать

мнимую и веществ. оси. Построим R(ω), Q(ω).

Вывод; для уст-й. САУ ф-ии R(ω) и Q(ω) должны по очереди пересек. ось абцисс, корни R и Q должны

ч ередоваться. Крит. уст-ви Найквиста: В отличии от ранее рассмот. крит. уст-ви. кот. опирались на соотв. исслед. системы хар-ки. Крит. Найквиста осн-н на анализе АФХ, КЧХ разом. системы по виду кот. судят об уст-ти замкн. системы. Причем АФХ может быть использ. как аналит. так и эксперим. Пусть имеем след. систему: Wз(p)=Wp(p)/1+Wp(p)

д ля систем 1-ой обрат. связью, Wp(p)=W1(p)*W1(p),Wp(p)=

М(р)/D(p) при (m≤n).Учитывая это получим Wз(p)= М(р)/(D(p)

+М(р))=М(р)/Dз(p).Устойчив.

замкнутой системы определ. хар-им ур-ем: Dз(p)=D(p)+М(p)=0. Ур-е анолог. годогр. Михайлова для замк-ой системы имеет вид: 1+ Wp(p)=0, 1+ Wp(jω)=0, Wp(jω)=-1. т.е крит. точка смещ. в т. с коорд.(-1; j0). Рассмот. повед. век-ра

1 +Wp(jω)=F(jω)-вектор F(jω)=1+М(jω)/(D(jω)= Dз(jω)/D(jω). Применим принцип аргумента: ∆argF(jω)= ∆arg

D з(jω)- ∆argD(jω). Чтобы замкн. система была устойч. необход. чтобы все корни Dз(jω) имели отриц. веществ. часть, но если корни слева, то тогда: ∆argDз(jω)=(П/2)*n. Пусть разомк. система не устойч. и имеет r-корней с положит. веществ. частью тогда: ∆argD(jω)=((n-r)*П/2)-r*П/2. и общее приращ. ф-и будет: ∆argF(jω)=((П/2)*n)-((n-r)*П/2)+r*П/2=(П/2)*2r. Получ. результат треб. для устойч. замк. САУ чтобы вектор F(jω) совершил r/2 оборотов в положит. направл. Def: замкн. САУ будет устой-ва если АФХ разом. сист. охватыв. точку с коорд.(-1; j0) r/2 раз, где r- число корней хар-ого ур-я раз. сист. с положит. веществ. частью. Если раз. сист. устой-ва т.е r=0, то фор-ка упрощ. Def: замк. САУ будет уст. Если АФХ раз. сист. неохват. т.(-1; j0).

Замк. САУ будет уст-м если АЧХ разом. сист. станет <1. раньше чем ФЧХ достигнет знач.

-П,φ(ω)=-П. Для ЛАЧХ: замкн. САУ будет уст. если ЛАЧХ

раз-ой сист. станет <0дБ, раньше чем ФЧХ достигнет знач. –П.

40 Алгебраические критерии устойчивости(Рауса, Гурвица и т.д)

Def: К.У. – называются признаки по которым можно судить об устойчивости САУ без решения диф. ур-ий динамики системы и без нахождения корней. Все критерии делятся на 2 группы: а) Алгебраические, которые основаны на анализе коэф. харак-го ур-я.; б) частотная, которая основана на анализе частот. характ-к системы. Простейший алгебраический критерии Стодолы. Простейшим необходимым, но недостаточным крит. уст. яв-ся требование, чтобы все коэфф. характ-го ур-я имели одинаковый знак. Док-во: Пусть мы имеем устойчивую систему с хар. ур-ем anpn+ an-1pn-1+…+ a1p+ a0=0 (1) , для устойчивости системы все корни имеют отриц. Вещественную часть. p1=-α1, p1=-α2, p3,43±jβ3,…, pn=-αn, где α и β – неотр. числа, тогда ур-е (1) можно записать an(p-p1)*(p-p2)*(p-p3)…(p-pn)=0, подставив значение корней an(p+α1)*(p+α2)*(p+α3-jβ3) * (p+α3+jβ3)…(p+αn)=0. an(p+α1)*(p+α2)*[(p+α3)232] …(p+αn)=0. Раскроем скобки и приведем к исходному виду(1). Перемножая и складывая положит. числа нельзя получить отрицательные т.е все коэфф. будут положительными ур-я (1) или отрицат. в зависимости от знака аn. Для систем I и II порядков этот критерий явл-я необходимым и достаточным. Для систем более высоких порядков(III и выше) этот критерий яв-ся необходимым т.е если хотя бы один коэф. характ-го ур-я имеет знак отличный от знака других коэф-ов, то можно сразу сказать что система не устойчива и никаких других исследов. проводить не нужно. Недостаточность критерия состоит в том что для некоторых неустойчивых систем мы можем получить все коэфф. одного знака и требуется дополнит. исследования. Были разработаны другие алгеб. критерии устойчивости которые яв-ся как необходимыми так и достаточными. Наиб. распростран. получили критерий Рауса и критерий Гурвица. Оба эти критерия в конце концов приводят к одной и той же системе неравенств

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]