Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы 30-35.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
216.08 Кб
Скачать

Вопрос 34

Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование.

Геометрический и физический смысл производной

Тангенс угла наклона касательной прямой

Геометрический смысл производной. На графике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точкиx0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло-серая линия C5). Расстояние Δx = x — x0 устремляется к нулю, в результате секущая переходит в касательную(постепенно темнеющие линии C5 — C1). Тангенс угла α наклона этой касательной — и есть производная в точке x0.

Если функция   имеет конечную производную в точке   то в окрестности   её можно приблизить линейной функцией

Функция   называется касательной к   в точке   Число   является угловым коэффициентом или тангенсом угла наклона касательной прямой.

Скорость изменения функции

Пусть   — закон прямолинейного движения. Тогда   выражает мгновенную скорость движения в момент времени   Вторая производная   выражает мгновенное ускорение в момент времени 

Вообще производная функции   в точке   выражает скорость изменения функции в точке  , то есть скорость протекания процесса, описанного зависимостью 

Вопрос 35

Дифференцирование – вычисление производных и дифференциалов любого порядка от функции одного переменного и частных производных и дифференциалов, а также полных дифференциалов от функций многих переменных.

Операция дифференцирования обладает свойством линейности: будучи примененной к линейной комбинации дифференцируемых функций f1f2, …, fn c числовыми коэффициентами с1с2; …; с2, т.е. к выражению

с1f1 + c2f2 + … + cnfn,

она дает такую же линейную комбинацию (т.е. линейную комбинацию с теми же коэффициентами)  производных или дифференциалов соответственно.

Основные правила дифференцирования. Сумма.

      Выведем несколько правил вычисления производных, В этом пункте значения функций u и v и их производных в точке х0обозначаются для краткости так: u(х0) = u, v(х0) = v, u'(х0) = u', v'(х0)=v`. Если функции u и v дифференцируемы в точке х0, то их сумма дифференцируема в этой точке и

(u+v)' = u' + v'.

      Коротко говорят: производная суммы равна сумме производных.        1) Для доказательства вычислим сначала приращение суммы функций в рассматриваемой точке: Δ(u+v) = u (х0+Δx)+ v(х0+Δx) – (u(х0)+v(х0)) = (u(х0+Δx)-u(х0)) + (v(х0+Δx)-v(х0)) = Δu + Δv        2)

      3) Функции u и v дифференцируемы в точке х0, т. е. при Δх→0 

      Тогда 

при Δх→0 (см. правило 3, а) предельного перехода), т. е. (u+v)' = u'+v’ 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]