Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по ММПР 43 вопроса.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
236.35 Кб
Скачать

15. Критерий Сэвиджа

На практике, выбирая одно из возможных решений, часто останавливаются на том, осуществление которого приведет к наименее тяжелым последствиям, если выбор окажется ошибочным. Этот подход к выбору решения математически был сформулирован американским статистиком Сэвиджем в 1954 году и получил название критерия Сэвиджа. Он особенно удобен для экономических задач и часто применяется для выбора решений в играх человека с природой.

По критерию Сэвиджа каждое решение характеризуется величиной дополнительных потерь, которые возникают при реализации этого решения, по сравнению с реализацией решения, правильного при данном состоянии природы. Естественно, что правильное решение не влечет за собой никаких дополнительных потерь, и их величина равна нулю. При выборе решения, наилучшим образом соответствующего различным состояниям природы, следует принимать во внимание только эти дополнительные потери, которые по существу, будут являться следствием ошибок выбора.

Для решения задачи строится так называемая “матрица рисков”, элементы которой показывают, какой убыток понесет игрок (ЛПР) в результате выбора неоптимального варианта решения.

Риском игрока rij при выборе стратегии i в условиях (состояниях) природы j называется разность между максимальным выигрышем, который можно получить в этих условиях и выигрышем, который получит игрок в тех же условиях, применяя стратегию i. Если бы игрок знал заранее будущее состояние природы j, он выбрал бы стратегию, которой соответствует max элемент в данном столбце: , тогда риск: .

Критерий Сэвиджа рекомендует в условиях неопределенности выбирать решение, обеспечивающее минимальное значение максимального риска: Этапы:

  1. Строится матрица стратегий (платёжная матрица). Столбцы соответствуют возможным исходам. Строки соответствуют выбираемым стратегиям. В ячейки записывается ожидаемый результат при данном исходе и при данной выбранной стратегии.

  2. Строится матрица сожаления (матрица рисков). В ячейках матрицы величина сожаления — разница между максимальным результатом при данном исходе (максимальном числе в данном столбце) и результатом при выбранной стратегии. Сожаление показывает величину, теряемую при принятии неверного решения.

  3. Минимаксное решение соответствует стратегии, при которой максимальное сожаление минимально. Для этого для каждой стратегии (в каждой строке) ищут максимальную величину сожаления. И выбирают то решение (строку), максимальное сожаление которого минимально.

16. Критерий Гурвица

Критерий устойчивости Гурвица — один из способов анализа линейной стационарной динамической системы на устойчивость, разработанный немецким математиком Адольфом Гурвицем.

Определители Гурвица составляются по следующему правилу:

Последний определитель включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель Гурвица выражается через предпоследний следующим образом:

Раскрывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более высоких порядков.

  • Первого порядка: a­0­p + a­1­= 0

  • Второго порядка. a­0­p2+ a­1p + a­2­= 0

  • Уравнение третьего порядка. a­0­p3+ a­1­p2+a ­2p + a­3­= 0

  • Уравнение четвертого порядка. a­0­p4+ a­1­p3 + a­2­p2+a­ 3p + a4­= 0

  • Пятого порядка. a­0­p5+ a­1­p4 + a­2­p3+ a­3­p2+a­ 4p + a5­= 0

Для уравнения пятого порядка, кроме положительности всех коэффициентов, должны выполняться еще два условия:

a­1­a­2­ – a­0­a­3­ > 0; (a­1 ­a ­2­ – a­0 ­a ­3­)( a3 ­a4 – a­2 ­a­5­)- (a­1­ a­4­ – a­0­ a5­)2 >0

Как видно, уже для уравнения пятой степени условия устойчивости по критерию Гурвица получаются достаточно громоздкими. Поэтому использование этого критерия практически ограничивается уравнениями четвертого порядка.

Критерий Гурвица - это компромиссный способ принятия решений.

При выборе решения из двух крайностей: пессимистической оценкой по критерию максимина и оптимистической оценкой максимакса рационально придерживаться промежуточной позиции, граница которой регулируется показателем пессимизма-оптимизма µ, называемым степенью оптимизма в критерии Гурвица.

В соответствии с этим компромиссным решением будет линейная комбинация минимального и максимального выигрыша   ,

где 0 < µ < 1,

gnm - размер возможного дохода, который соответствует решениям при данных исходах.

Причем величину µ определяет исследователь или лицо, принимающее решение, при этом значению µ=1 критерию Гурвица соответствует правилу максимина (критерий Вальда), а значению µ =0 - правило максимакса (критерий Сэвиджа).

Критерий Гурвица заключается в том, что минимальному и максимальному результатам каждого решения присваивается "вес". Умножив результаты на соответствующие веса и суммируя их, лицо, принимающее решение, получает общий результат. Далее выбирается решение с наибольшим результатом.

Достоинством метода является принципиальная простота, недостатком - необходимость выполнения операции вычисления определителя, которая связана с определенными вычислительными тонкостями (например, для больших матриц может оказаться значительной вычислительная ошибка).