
- •1.Место и роль математики в арсенале управленческих приемов
- •2.Историческая справка становления и развития исследования операций
- •3.Постановка задачи принятия решений
- •4.Основные этапы разрешения проблемы принятия решений
- •5.Классификация задач принятия решений
- •6.Классификация математических методов принятия решений
- •7.Классификация математических моделей принятия решений
- •8. Схема процесса принятия решений
- •9. Декомпозиция задач принятия решений
- •10. Оперативные приемы принятия решений
- •11. Пример подготовки решения на основе макроэкономических данных
- •12. Критерий принятия решений. Необходимость и условия его ввода. Функция предпочтения.
- •13. Минимальный критерий принятия решения. Его определение, достоинства, недостатки. Порядок применения
- •14. Критерий Байеса-Лапласа
- •15. Критерий Сэвиджа
- •16. Критерий Гурвица
- •17. Критерий Ходжа-Лемана
- •18. Критерий Гермейера
- •19. Среды решения и выработка решения в условиях определенности
- •20. Детерминированные методы принятия решений. Матричная модель производственной программы.
- •21. Классификация оптимизационных задач принятия решений.
- •22. Линейное программирование в принятии решений. Классические примеры.
- •23. Двойственная задача линейного программирования.
- •24. Модель оптимального планирования производства.
- •25. Экономические характеристики оптимального плана.
- •26. Целочисленное программирование в принятии решений.
- •27. Динамическое программирование в принятии решений.
- •28. Нелинейное программирование в принятии решений.
- •29. Дискретное программирование в принятии решений.
- •30. Стохастическое программирование в принятии решений
- •31. Многокритериальная оптимизация в принятии решений
- •32. Графы в принятии решений
- •33. Основные понятия теории графов
- •34. Кратчайший путь на графе
- •35. Потоки в сетях в принятии решений
- •36. Методы теории игр (теория конфликтов), роль информации и равновесие по Нэшу в теории принятия решений.
- •37. Матрицы последствий и рисков
- •38. Принятие решений в условиях полной неопределенности
- •39. Пр в условиях частичной неопределенности
- •40. Ситуации в практике менеджмента, допускающие игровой подход
- •41. Байесовский подход
- •42. Конфликтные ситуации в принятии решений. Кооперативные игры
- •43. Эконометрические методы принятия решений. Основные понятия и определения.
43. Эконометрические методы принятия решений. Основные понятия и определения.
Регрессионный анализ — статистический метод исследования зависимости между зависимой переменной и одной или несколькими независимыми переменными . При этом терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Для адекватного описания сложных внутренне неоднородных экономических процессов, как правило, применяются системы эконометрических уравнений. В более простых случаях можно использовать и простые изолированные уравнения
Анализ временных рядов — совокупность математико-статистических методов анализа, предназначенных для выявления структуры временных рядов и для их прогноза. Выявление структуры временного ряда необходимо для того, чтобы построить математическую модель того явления, которое является источником анализируемого временного ряда. Прогноз будущих значений временного ряда используется при принятии решений. Прогнозирование также интересно тем, что оно рационализирует существование анализа временных рядов отдельно от экономической теории.
Как правило, при прогнозировании исходят из некоторой заданной параметрической модели. При этом используются стандартные методы параметрического оценивания (МНК, ММП, метод моментов). С другой стороны, достаточно разработаны методы непараметрического оценивания для нечетко заданных моделей.
Панельный анализ
Панельные данные представляют собой прослеженные во времени пространственные микроэкономические выборки, то есть они состоят из наблюдений одних и тех же экономических единиц, которые осуществляются в последовательные периоды времени. Панельные данные насчитывают три измерения: признаки — объекты — время. Их использование даёт ряд существенных преимуществ при оценке параметров регрессионных зависимостей, так как они позволяют проводить как анализ временных рядов, так и анализ пространственных выборок. С помощью подобных данных изучают бедность, безработицу, преступность, а также оценивают результативность государственных программ в области социальной политики.