
- •1.Место и роль математики в арсенале управленческих приемов
- •2.Историческая справка становления и развития исследования операций
- •3.Постановка задачи принятия решений
- •4.Основные этапы разрешения проблемы принятия решений
- •5.Классификация задач принятия решений
- •6.Классификация математических методов принятия решений
- •7.Классификация математических моделей принятия решений
- •8. Схема процесса принятия решений
- •9. Декомпозиция задач принятия решений
- •10. Оперативные приемы принятия решений
- •11. Пример подготовки решения на основе макроэкономических данных
- •12. Критерий принятия решений. Необходимость и условия его ввода. Функция предпочтения.
- •13. Минимальный критерий принятия решения. Его определение, достоинства, недостатки. Порядок применения
- •14. Критерий Байеса-Лапласа
- •15. Критерий Сэвиджа
- •16. Критерий Гурвица
- •17. Критерий Ходжа-Лемана
- •18. Критерий Гермейера
- •19. Среды решения и выработка решения в условиях определенности
- •20. Детерминированные методы принятия решений. Матричная модель производственной программы.
- •21. Классификация оптимизационных задач принятия решений.
- •22. Линейное программирование в принятии решений. Классические примеры.
- •23. Двойственная задача линейного программирования.
- •24. Модель оптимального планирования производства.
- •25. Экономические характеристики оптимального плана.
- •26. Целочисленное программирование в принятии решений.
- •27. Динамическое программирование в принятии решений.
- •28. Нелинейное программирование в принятии решений.
- •29. Дискретное программирование в принятии решений.
- •30. Стохастическое программирование в принятии решений
- •31. Многокритериальная оптимизация в принятии решений
- •32. Графы в принятии решений
- •33. Основные понятия теории графов
- •34. Кратчайший путь на графе
- •35. Потоки в сетях в принятии решений
- •36. Методы теории игр (теория конфликтов), роль информации и равновесие по Нэшу в теории принятия решений.
- •37. Матрицы последствий и рисков
- •38. Принятие решений в условиях полной неопределенности
- •39. Пр в условиях частичной неопределенности
- •40. Ситуации в практике менеджмента, допускающие игровой подход
- •41. Байесовский подход
- •42. Конфликтные ситуации в принятии решений. Кооперативные игры
- •43. Эконометрические методы принятия решений. Основные понятия и определения.
37. Матрицы последствий и рисков
Риск – одно из важнейших понятий, сопутствующих любой активной деятельности человека. Имеются два главных подхода к объективному измерению вероятности риска. Один из них – априори, методом дедукции; другой – апостериори, посредством статистического анализа эмпирических данных.
Почти всегда операции проводятся в условиях неопределенности и потому их результат невозможно предсказать заранее. Поэтому операции рискованны: при их проведении возможны как прибыль, так и убыток (или не очень большая прибыль по сравнению с той, на что надеялись проводившие эту операцию).
Проводящий операцию (принимающий решение) называется ЛПР – Лицо, принимающее решение.
Операция называется рискованной, если она может иметь несколько исходов, не равноценных для лица принимающего решение.
Матрицы последствий и рисков используются как инструмент для представления и анализа результатов. Матрицы помогают лицу, принимающему решение, осмыслять и формализовать процесс решения на:
постановку целей;
выбор возможной отдачи;
оценку и выбор альтернативных стратегий.
Допустим, рассматривается вопрос о проведении операции. Неясно, чем она может закончиться. В связи с этим проводится анализ нескольких возможных решений и их последствий. Так приходим к следующей общей схеме принятия решений в условиях неопределенности.
Предположим, что ЛПР рассматривает несколько возможных решений i=1, …,n. Ситуация неопределенна, понятно лишь, что наличествует какой–то из вариантов j=1,….,n. Если будет принято i–е решение, а ситуация есть j–я, то фирма, возглавляемая ЛПР, получит доход qij. Матрица Q=(qij) называется матрицей последствий (возможных решений). Допустим, мы хотим оценить риск, который несет i-е решение. Нам неизвестна реальная ситуация. Но если бы мы её знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Если ситуация j-я, то было бы принято решение, дающее доход qi=max qij. Значит, принимая i-е решение, мы рискуем получить не qj , а только qij , т.е. принятие i-го решения несет риск недобрать rij=qj–qij. Матрица R=(rij) называется матрицей рисков.
38. Принятие решений в условиях полной неопределенности
Неопределенность - ситуация, когда полностью или частично отсутствует информация о возможных состояниях системы и внешней среды. Иначе говоря, когда в системе возможны те или иные непредсказуемые события (вероятностные характеристики которых не существуют или неизвестны).
Неопределенность, связанную с отсутствием информации о вероятностях состоянии среды (природы), называют «безнадежной» или «дурной».
В таких случаях для определения наилучших решении используются следующие критерии: максимакса, Вальда, Сэвиджа, Гурвица. Рассматриваются альтернативные подходы, в частности принципы Байеса – Лапласа.
Критерий максимакса. С его помощью определяется стратегия, максимизирующая максимальные выигрыши для каждого состояния природы. Это критерий крайнего оптимизма. Наилучшим признается решение, при котором достигается максимальный выигрыш, равный
Максиминный критерий Вальда. С позиций данного критерия природа рассматривается как агрессивно настроенный и сознательно действующий противник типа тех, которые противодействуют в стратегических играх. Выбирается решение, для которого достигается значение
Критерий минимаксного риска Сэвиджа. Выбор стратегии аналогичен выбору стратегии по принципу Вальда с тем отличием, что игрок руководствуется не матрицей выигрышей, а матрицей рисков:
Критерий пессимизма-оптимизма Гурвица. Этот критерий при выборе решения рекомендует руководствоваться некоторым средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. Согласно этому критерию стратегия в матрице А выбирается в соответствии со значением
В случае, когда по принятому критерию рекомендуется к использованию несколько стратегий, выбор между ними может делаться по дополнительному критерию, например в расчет могут приниматься средние квадратичные отклонения от средних выигрышей при каждой стратегии. Еще раз подчеркнем, что здесь стандартного подхода нет. Выбор может зависеть от склонности к риску ЛПР.
Таким образом, в случае отсутствия информации о вероятностях состоянии среды теория не дает однозначных и математически строгих рекомендации по выбору критериев принятия решений. Это объясняется в большей мере не слабостью теории, а неопределенностью самой ситуации. Единственный разумный выход в подобных случаях - попытаться получить дополнительную информацию, например, путем проведения исследований или экспериментов.