
- •1.Место и роль математики в арсенале управленческих приемов
- •2.Историческая справка становления и развития исследования операций
- •3.Постановка задачи принятия решений
- •4.Основные этапы разрешения проблемы принятия решений
- •5.Классификация задач принятия решений
- •6.Классификация математических методов принятия решений
- •7.Классификация математических моделей принятия решений
- •8. Схема процесса принятия решений
- •9. Декомпозиция задач принятия решений
- •10. Оперативные приемы принятия решений
- •11. Пример подготовки решения на основе макроэкономических данных
- •12. Критерий принятия решений. Необходимость и условия его ввода. Функция предпочтения.
- •13. Минимальный критерий принятия решения. Его определение, достоинства, недостатки. Порядок применения
- •14. Критерий Байеса-Лапласа
- •15. Критерий Сэвиджа
- •16. Критерий Гурвица
- •17. Критерий Ходжа-Лемана
- •18. Критерий Гермейера
- •19. Среды решения и выработка решения в условиях определенности
- •20. Детерминированные методы принятия решений. Матричная модель производственной программы.
- •21. Классификация оптимизационных задач принятия решений.
- •22. Линейное программирование в принятии решений. Классические примеры.
- •23. Двойственная задача линейного программирования.
- •24. Модель оптимального планирования производства.
- •25. Экономические характеристики оптимального плана.
- •26. Целочисленное программирование в принятии решений.
- •27. Динамическое программирование в принятии решений.
- •28. Нелинейное программирование в принятии решений.
- •29. Дискретное программирование в принятии решений.
- •30. Стохастическое программирование в принятии решений
- •31. Многокритериальная оптимизация в принятии решений
- •32. Графы в принятии решений
- •33. Основные понятия теории графов
- •34. Кратчайший путь на графе
- •35. Потоки в сетях в принятии решений
- •36. Методы теории игр (теория конфликтов), роль информации и равновесие по Нэшу в теории принятия решений.
- •37. Матрицы последствий и рисков
- •38. Принятие решений в условиях полной неопределенности
- •39. Пр в условиях частичной неопределенности
- •40. Ситуации в практике менеджмента, допускающие игровой подход
- •41. Байесовский подход
- •42. Конфликтные ситуации в принятии решений. Кооперативные игры
- •43. Эконометрические методы принятия решений. Основные понятия и определения.
34. Кратчайший путь на графе
Задачи поиска кратчайших и длиннейших путей на графах возникают в различных областях управления.
Задача о кратчайшем пути. Пусть задана сеть из n + 1 вершины, то есть ориентированный граф, в котором выделены две вершины – вход (нулевая вершина) и выход (вершина с номером n). Для каждой дуги заданы числа, называемые длинами дуг. Длиной пути (контура) называется сумма длин входящих в него дуг (если длины дуг не заданы, то длина пути (контура) определяется как число входящих в него дуг). Задача заключается в поиске кратчайшего пути (пути минимальной длины) от входа до выхода сети.
Известно, что для существования кратчайшего пути необходимо и достаточно отсутствия в сети контуров отрицательной длины. Предположим, что в сети нет контуров. Тогда всегда можно пронумеровать вершины таким образом, что для любой дуги (i, j) имеет место j > i. Такая нумерация называется правильной. Легко показать, что в сети без контуров всегда существует правильная нумерация.
Обозначим
–
длину дуги (i; j). Кратчайший путь в сети,
имеющей правильную нумерацию, определяется
следующим алгоритмом.
Алгоритм 1.
Шаг 0: Помечаем нулевую вершину индексом λ0 = 0;
Шаг
k: помечаем вершину k индексом
Индекс
выхода
будет
равен длине кратчайшего пути. Когда
индексы (называемые в некоторых задачах
потенциалами вершин) установятся,
кратчайший путь определяется методом
обратного хода от выхода к входу, то
есть кратчайшим является путь μ
= (0; i1; i2;
...; in-1; n),
такой, что
и т.д.
Следующий алгоритм дает возможность определять кратчайший путь в общем случае (то есть при произвольной нумерации вершин).
Алгоритм 2 (алгоритм Форда).
Шаг
0: Помечаем нулевую вершину индексом
= 0, все остальные вершины индексами
;
Шаг
k: Рассматриваем все дуги. Если для дуги
(i; j)
,
, то вычисляем новое значение
Индексы
устанавливаются за конечное число
шагов. Обозначим {
}
– установившиеся значения индексов,
которые обладают следующим свойством:
величина {
}
равна длине кратчайшего пути из нулевой
вершины в вершину i. Кратчайший путь из
вершины 0 в вершину i определяется методом
обратного хода.
35. Потоки в сетях в принятии решений
Задачи теории потоков в сетях являются одними из основных в исследовании операций, computer science и инженерном деле.
К теории потоков относятся различные задачи, которые можно классифицировать следующим образом. Задачи транспортного типа – транспортная задача, поиск пути минимальной длины, поиск циклов отрицательного веса (неоптимальных перевозок) и т. д. Задачи определения существования потока – задача о максимальном потоке и, двойственная к ней, задача поиска минимального разреза. А также задача о поиске обобщенного потока – потока с потерями и приобретениями.
В 1956 году классическая задача поиска максимального потока была поставлена Фордом и Фалкерсоном и записана уже не в терминах задачи линейного программирования, а в терминах новой теории – теории потоков. Ими же отдельно сформулирована задача поиска максимального потока и предложен первый алгоритм ее решения.
Сетью называется связный граф, в котором заданы “пропускные способности” ребер. Заметим, что сети имеют огромные приложения, в частности, “сети планирования” (имеется в виду планирование производства некоторых новых, достаточно сложных изделий), где “пропускные способности” ребер – это время, за которое нужно из нескольких узлов изделия (вершин графа) получить другой (более сложный) узел.
Потоком в сети между вершиной t (источником) и s (стоком) называется набор чисел cij, (т. е. количество условного “груза”, перевозимого из вершины с номером i в вершину с номером j), удовлетворяющих четырем условиям:
1) числа cij Ј 0, причем если cij > 0, то cji = 0 (нет встречных перевозок);
2) числа cij Ј qij (соответствующих пропускных способностей ребер);
3) если вершина с номером i – промежуточная (не совпадает с источником и стоком), то
т. е. количество “груза”, вывозимого из вершины i, равно количеству “груза”, ввозимого в эту вершину;
4) количество “груза”, вывозимого из источника t, должно быть равно количеству груза, ввозимого в сток s:
Число А называется величиной данного потока или просто потоком между t и s.
Для дальнейшего нужно следующее определение:
Пусть имеется некоторое сечение между вершинами t и s. Тогда величиной сечения называется сумма пропускных способностей ребер, входящих в это сечение. Сечение называется минимальным (максимальным), если его величина минимальна (максимальна).
Теорема Форда – Фалкерсона (1955). Максимальный поток между вершинами t и s равен величине минимального сечения между этими вершинами.
АЛГОРИТМ ФОРДА - ФАЛКЕРСОНА
Алгоритм начинает работу с начального допустимого потока (возможно, нулевого). Затем осуществляются попытки увеличить величину потока с помощью систематического поиска всех возможных цепей из s в t, на которых можно увеличить величину потока (дополняющие цепи).
Поиск дополняющих цепей производится путем расстановки меток, которые указывают, на каких дугах и на сколько можно увеличить поток. Когда найдена одна из таких цепей, поток вдоль нее увеличивается. После чего все метки стираются, и вновь полученный поток используется в качестве исходного при новой расстановке меток.
Алгоритм заканчивает работу, когда нельзя найти ни одну дополняющую цепь. Последний найденный поток является максимальным.
Актуальность задачи о максимальном потоке постоянно возрастает в месте со строительством трубопроводов, новых дорог, роста пользователей Интернета и любых других сетей. Поэтому быстрое и точное её решение крайне необходимо во всех сферах нашей деятельности, где хоть как-то встает вопрос об перемещение чего-либо куда-либо с максимальной рациональностью.