Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по ММПР 43 вопроса.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
236.35 Кб
Скачать

26. Целочисленное программирование в принятии решений.

При рассмотрении целого ряда задач финансового менеджмента и бизнеса необходимо учитывать требование целочисленности используемых переменных. Такие задачи называются задачами целочисленного программирования.

Под задачей целочисленного программирования (ЦП) понимается задача, в которой все или некоторые переменные должны принимать целые значения. В том случае, когда ограничения и целевая функция задачи представляют собой линейные зависимости, задачу называют целочисленной задачей линейного программирования. В противном случае, когда хотя бы одна зависимость будет нелинейной, это будет целочисленной задачей нелинейного программирования. Особый интерес к задачам ЦП вызван тем, что во многих практических задачах необходимо находить целочисленное решение ввиду дискретности ряда значений искомых переменных.

Целочисленным (иногда его называют также дискретным) программированием называется раздел математического программирования, изучающий экстремальные задачи, в которых на искомые переменные накладывается условие целочисленности, а область допустимых решений конечна. Огромное количество экономических задач носит дискретный, чаще всего целочисленный характер, что связано, как правило, с физической неделимостью многих элементов расчета: например, нельзя построить два с половиной завода, купить полтора автомобиля  и т.д.

Целочисленное программирование возникло в 50-60-е годы нашего века из нужд практики -  главным образом в работах американских математиков Дж.Данцига и Р.Гомори. Первоначально целочисленное программирование развивалось независимо от геометрии чисел на основе теории и методов математической оптимизации, прежде всего линейного программирования. Однако в последние время исследования в этом направлении все чаще проводятся средствами математики целых чисел.

Задачи такого типа весьма актуальны, так как к их решению сводится анализ разнообразных ситуаций, возникающих в экономике, технике, военном деле и других областях. С появлением ЭВМ, ростом их производительности повысился интерес к задачам такого типа и к математике в целом.

Рекомендации по формулировке и решению ЦП

  • Количество целочисленных переменных уменьшать насколько возможно.

  • В отличие от общих задач ЛП, добавление новых ограничений особенно включающих целочисленные переменные, обычно уменьшают время решения задач ЦП.

  • Если нет острой необходимости в нахождении точного оптимального целочисленного решения, отличающегося от непрерывного решения, например, 3%, тогда реализацию метода ветвей и границ для задачи максимизации можно заканчивать, если отношение разницы между верхней и нижней границ к верхней границе меньше 0,03.

Основные методы решения задач целочисленного программирования - метод Гомори и метод ветвей и границ.

27. Динамическое программирование в принятии решений.

Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач велико.

Метод динамического программирования сверху — это простое запоминание результатов решения тех подзадач, которые могут повторно встретиться в дальнейшем. Динамическое программирование снизу включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.

Оптимальная подструктура в динамическом программировании означает, что оптимальное решение подзадач меньшего размера может быть использовано для решения исходной задачи.

Подзадачи решаются делением их на подзадачи ещё меньшего размера и т. д., пока не приходят к тривиальному случаю задачи, решаемой за константное время (ответ можно сказать сразу). 

Перекрывающиеся подзадачи в динамическом программировании означают подзадачи, которые используются для решения некоторого количества задач (не одной) большего размера (то есть мы несколько раз проделываем одно и то же). 

Подводя итоги вышесказанного можно сказать, что динамическое программирование пользуется следующими свойствами задачи:

  • перекрывающиеся подзадачи;

  • оптимальная подструктура;

  • возможность запоминания решения часто встречающихся подзадач.

Динамическое программирование обычно придерживается двух подходов к решению задач:

  • нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.

  • восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи.