Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по ММПР 43 вопроса.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
236.35 Кб
Скачать

24. Модель оптимального планирования производства.

Постановка задачи оптимального планирования

Планирование — важнейший этап экономической и управленческой деятельности. Объектом планирования может быть деятельность подразделения или всего предприятия, отрасли промышленности или сельского хозяйства, региона, наконец, государства.

Постановка задачи планирования в общем случае выглядит следующим образом:

имеются некоторые плановые показатели: X, Y, ...;

имеются некоторые ресурсы: R1, R2, ..., за счет которых эти плановые показатели могут быть достигнуты;

имеется определенная стратегическая цель, зависящая от значений  плановых показателей,  на которую следует ориентировать планирование.

Задача оптимального планирования заключается в определении значений плановых показателей с учетом ограниченности ресурсов при условии достижения стратегической цели.

Вопрос о стратегических целях в этом случае очень сложен. У государства их много, но в разные периоды истории приоритеты могут меняться. Например, в военное время главной целью является максимальная обороноспособность, военная мощь страны. В мирное время в современном цивилизованном государстве приоритетной целью должно быть достижение максимального уровня жизни населения.

Решение задач оптимального планирования чаще всего является сложным и недоступным при использовании лишь человеческого опыта (эмпирических методов). Для решения таких задач строится математическая модель, устанавливающая связь между параметрами задачи. Следовательно, оптимальное планирование осуществляется путем применения математического моделирования. Как правило, такие модели для реальных ситуаций не поддаются аналитическому решению, поэтому используются численные методы решения, реализуемые на компьютере.

25. Экономические характеристики оптимального плана.

Опти­мизационные  межотраслевые  модели  характеризуются  двумя  спе­цифическими  свойствами.  Во-первых,  в  оптимальный  план  вклю­чается  только  по  одному  способу  для  каждого  производимого  вида  продукции  независимо  от  того,  какое  количество  способов  вводится  в  условия  задачи.  Во-вторых,  объемы  и  структура  используемой  конечной  продукции  не  оказывают  никакого  влияния  на  выбор  производственных  способов  и  определение  общественно  необходи­мых  затрат  на  производство  продукции.

Хотя  выявленные  свойства  создают  значительные  удобства  при  проведении  оптимизационных  расчетов  и  анализе  оптимальных  решений,  они  не  являются  адекватным  отражением  свойств  реаль­ной  экономики.  Данные  свойства  моделей  обусловлены  тем,  что  выбор  производственных  способов  осуществляется  с  позиций  наи­более  эффективного  использования  только  одного  ограниченного  ресурса  –  труда.  Решения,  получаемые  с  помощью  рассматривае­мых  моделей,  должны  интерпретироваться  как  условно-оптималь­ные,  т.  е.  получаемые  в  предположении,  что  трудовые  ресурсы  яв­ляются  единственным  дефицитным  ресурсом  в  народном  хозяйстве.  Эти  условно-оптимальные  решения  должны  затем  корректироваться  с  учетом  использования  других  ограниченных  ресурсов.

Основные положения задач оптимизации

Представленная задача является задачей оптимизации, решаемой методами линейного программирования. Методы линейного программирования применят к практическим задачам, в которых:

· необходимо выбрать наилучшее решение (оптимальный план) из множества возможных;

решение можно выразить как набор значений некоторых переменных величин;

· ограничения, накладываемые на допустимые решения специфическими условиями задачи, формулируются в виде линейных уравнений или неравенств;

· цель выражается в виде линейной функции, зависящей от основных переменных.

При практическом решении подобных задач математическим методом, прежде всего составляется экономико-математическая модель. Используется следующая схема формирования модели:

· определяется переменные величины, значения которых однозначно определяют возможные состояния задачи;

· составляют соотношения, определяющие взаимосвязи в поставленной задаче;

· определяется структура целевой функции;

· строится математическая модель поставленной задачи, как задача отыскания экстремума целевой функции при условии выполнения ограничений, накладываются на переменные.